INTRODUCTION

Vernon B. Hester distributes all software on an "AS-IS" basis without warranty.

Vernon B. Hester shall not be liable and/or responsible to the purchaser with respect
to liability, loss, and/or damage caused and/or alleged to be caused directly or
indirectly by the use of this software, that includes but is not limited to any
interruption of service, loss of business, and/or anticipatory profits, and/or
consequential damage resulting from use of this software.

ZEUS is copyrighted with all rights reserved. Copying, duplicating, selling, or any
unauthorized distributing of this product is expressly forbidden. In accepting this
product, the purchaser recognizes and accepts this agreement.

ZEUS
Copyright (c) 1983, 1984 by Cosmopolitan Electronics Corporation.
Copyright (c) 1990, 1997, 1998, 2000, and 2004 by Vernon B. Hester

REFERENCE MANUAL
Copyright (c) 1983, 1984 by Cosmopolitan Electronics Corporation.
Copyright (c) 1991, 1997, 1998, 2000, 2002, and 2010 by Vernon B. Hester

First printing August 1983
Second printing December 1983
Third printing April 1984
Fourth printing September 1991
Fifth printing April 1997
Sixth printing January 1998
Seventh printing April 2000
Eight printing April 2002
Ninth printing July 2010

®
ZZEB() is a Registered Trademark of Zilog, Inc.

Page 1-1

INTRODUCTION

ZEUS Editor/Assembler

ZEUS is distributed on a 40-cylinder single-sided 5%" data diskette, and is available
for ESOTERIC; Model 4 MULTIDOS; TRSDOS/LS-DOS 6.x.x, DOSPLUS IV; and all MODEL I and
Model III operating systems (four compositions). You must specify the operating system
you are planning to use with ZEUS. ZEUS is also available on a double-sided 3%"
diskette with ESOTERIC, Model I, Model III, Max-80, and Model 4 MULTIDOS operating
systems.

ZEUS
The files on the ZEUS diskette are:
ZEUS/CMD -- Editor/Assembler. ®
7280%Z/ASM -- Source code of 1136 Z80 instructions in object code order.

ZEUS is executed by entering from the DOS command level.
ZEUS[PROG]<ENTER>

PROG/ASM is the source filename, and PROG inclusion is optional. If PROG is entered in
the command prompt, then PROG/ASM loads after ZEUS initialization. The load modifiers,
#, *, and % must precede the filename. e.g., ZEUS #PROG for the file PROG/ASM source
file in ASCII format.

The main power of ZEUS is its operating speed. ZEUS is the fastest full-featured
editor/assembler in the universe. ZEUS obtains its speed by partially assembling each
line as it is entered and keeping the label table intact as long as the text is not
changed (if you are familiar with BASIC, the label table is very much like variables
assigned during program execution) .

ZEUS can create source code in four formats:
1. ZEUS format
2. ASCII format
3. EDTASM format
4. the modified EDTASM format used by NEWDOS/80.

There are no special conversion programs required to accomplish the different formats.
You control the conversion when you save the file.

EXAMPLES:

filespec {ZEUS format}

filespec {ASCII format}

* filespec {EDTASM format}

% filespec ({Modified EDTASM format used by NEWDOS/80}

0 n N n

Inversely ZEUS can load files in any of these four formats.

EXAMPLES:

filespec {ZEUS format}

filespec {ASCII format}

* filespec {EDTASM format}

% filespec ({Modified EDTASM format used by NEWDOS/80}

[o e

Page 1-2

INTRODUCTION

FILENAMES

ZEUS appends /ASM to all prompted source filenames, and /CMD to all object filenames
that do not include an extension. Filenames defined with the GET instruction must have
the full filename (and must be in the correct case) because the GET instruction is not

prompted for a source file. e.g., GET

BAS8/ASM. To access a prompted file without an

extension, append a / immediately behind the filename.

EXAMPLES:
Your input
DOGGY
KOOL .MAN
COLUMNS: 2
TABLES .MONKEY: 0
MOVIE/INC
VIDEO/SOR.CAR
KILLER/GET:2
OVERMAKE /SRC.FUNNY: 1
SEXY/
MUCHO/ .GIRL
WOMAN/ : 3
COLDHEAT/.SUN:3

Filespec given to DOS
DOGGY/ASM
KOOL/ASM.MAN
COLUMNS/ASM: 2
TABLES/ASM.MONKEY: 0
MOVIE/INC
VIDEO/SOR.CAR
KILLER/GET:2
OVERMAKE/SRC.FUNNY: 1
SEXY

MUCHO.GIRL

WOMAN : 3
COLDHEAT.SUN: 3

Filenames prompted and answered by you are remembered with default/non-default
extensions. If you key in "FAST" to a load filename response, then "FAST/ASM" is the

default filename for <L>oads, <S>aves,

object filename.

Your input

Source filename

DOG DOG/ASM
DOG/SOR DOG/SOR
DOG/ DOG

and <K>ills; with "FAST/CMD" as the default

Object filename
DOG/CMD
DOG/CMD
DOG/CMD

Your input of an object filename is retained without affecting the source default

filename.
EXAMPLE :
L SAM
ANO<ENTER>

Current Filespec: SAM/CMD
Filespec: MARY/CMD<ENTER>

{SAM/ASM 1is the default source filename}

The default source filename remains as SAM/ASM, whereas MARY/CMD is the default object

filename.

Page 1-3

INTRODUCTION

ZEUS 1/0

Throughout this manual, the words print and LPrint are used to designate ZEUS screen
ASCII and printer ASCII output respectively.

Print is used whenever output is directed to the device in the video DCB (the contents
of 401DH for the MODEL I/III and all models of MULTIDOS). Unless this device is routed
elsewhere, the output goes to the display.

LPrint is used whenever output is directed to the device in the printer DCB, (the
contents 4025H for the MODEL I/III and all models of MULTIDOS). Unless this device is
routed elsewhere, the output goes to the printer.

ZEUS uses 256 as the logical record length for all files.

For MODEL I/III and all models of MULTIDOS, disk I/0 is performed by using the calls
at 0013H and 001BH for byte I/0, and the DOS vectors at 4436H and 4439H for sector
I/0. For MODEL 4 TRSDOS/LS-DOS 6.x.x and DOSPLUS IV, disk I/O is performed by using
the appropriate supervisor calls (3, 4, 67, or 75).

ZEUS PROCESS

ZEUS 1is a two-pass assembler. The first pass creates the label table, and establishes
the values for DEFS, DS, END, EQU, and ORG pseudo-ops. If there are no first pass
errors, then the first pass complete status byte is set, and ZEUS continues with the
second pass. The second pass outputs in accordance with the selected options: H, N or
S, then prints the total errors. When the second pass is complete, the second pass
status byte is set. Additional A commands with the second pass status byte set is
instant assembly of the source code in the text buffer. This feature enables you to
assemble with AN, to check for assembly errors. If there are no errors, proceed with
ANO for the creation of an object file. Top speed is obtained if most of the code is
in the text buffer. The descriptions of the ZEUS commands start in section 3.

Page 1-4

INTRODUCTION

REFERENCE MANUAL NOTATION

< > Carats enclose a key to be pressed. The "<" and ">" are not keyed in.
e.g., <ENTER> = Press the "ENTER" key, <BREAK> = Press the "BREAK" key,
<N> = Press the "N" key

{ } Braces enclose manual comments. The braces "{and the enclosed comment}"
are not keyed in. e.g., D 23/47 {deletes lines 23 to 47 inclusive}

[] Brackets enclose optional parameters. The brackets "[" and "]" are not
keyed in. i.e., A[H]<ENTER> can be A<ENTER> or AH<ENTER>

Ellipses represent the repetition of an optional parameter.
e.g., [,EXP][,EXPI[,...]

RELNUM RELNUM is a parameter that can be either a number that represents a
relative line in the text buffer, or a LABEL that indirectly represents a
relative line in the text buffer where LABEL is in the label field of the
relative line.

The pound sign is a RELNUM parameter for line 1.
The asterisk is a RELNUM parameter for the highest line.
- The period is a RELNUM parameter for the current line.

< Less than modifier for RELNUM. (One number less).
e.g., <354 is a RELNUM parameter of 353

GLOSSARY

ASCIl format: Alphanumeric source code stored without line numbers that usually uses the
tab character, 09H, instead of spaces, 20H, to separate the fields. Most editors
usually can handle this format. You can use a word processor to edit source code
stored in ASCII format; however, the word processor probably uses spaces instead of
tabs to separate the fields. ZEUS can load, L#, and save, S#, source code stored in
ASCII format. In addition, ZEUS deletes the line-feed character, OAH, if a line is
terminated with a carriage-return line-feed pair, ODH/OAH.

Current line: The last printed, edited, or entered text buffer line.

EDTASM format: Source code stored with a header byte, D3H, followed by a six character
name, alphanumeric text with each line preceded by a five digit line number (the high
bit is set on each digit), and a terminator byte, 1AH. This is the format used by the
tape version of the Radio Shack's Editor/Assembler, and the first implementation on
NEWDOS/21. The modified version of EDTASM, used by NEWDOS/80, does not have the header
byte and the six-character filename. ZEUS can load, L*, and save, S*, source code
stored in EDTASM format as well as load, L%, and save, S%, source code stored in the
modified EDTASM format used by NEWDOS/80.

LABEL: A string used to represent a value symbolically (ZEUS enables labels to be from
1 to 127 characters in length; however, a label of 127 characters cannot be referenced
because the maximum line length is also 127 characters).

START XOR A

Page 1-5

INTRODUCTION

Mnemonic: An assembly language instruction. OPCODE [OPERAND]

CALL C,INIT

Object code: Binary code directly executable by the microprocessor.

Operator: A single symbol describing an operation to be performed.

ZEUS operators are:

+ ADDITION
- SUBTRACTION
* MULTIPLICATION
/ DIVISION
I Logical OR
Logical XOR
& Logical AND
% MODULO
< SHIFT
LD HL, MUCH+MORE {The + operator}

Pseudo-op: Special orders you give to the assembler. Pseudo-ops do not generate
object code. However, some pseudo-ops tell ZEUS how to translate the operand
field into object code.

COMM 'This 1s a comment
VIDEO EQU 33H
ORG 5200H

Relative address: The value for the beginning of the current instruction.
78A2 DDCBDD4E 00623 BIT 1, (IX-23H) {relative address 78A2H}
78A6 CA3B56 00624 JP 7, GOUSA {relative address 78A6H}
Source code: The symbolic representation of LABELS and mnemonics, that the
assembler translates into specific object code.

LABEL OPCODE [OPERAND]

OPCODE

Text buffer: The RAM resident storage area for source code.

Page 1-6

INTRODUCTION

A specific format is required to enable ZEUS to translate source code into object
code. Fields are used to distinguish the various zones in a source text line for the
symbolic representation of your program, and comments. A source text line can be
blank, contain only a label, or contain only a semicolon. The maximum source text line
length is 127 characters.

The LABEL field, optional, contains a label with a value equivalent to the relative
address of, or by, the instruction that follows.

®
The OPCODE field contains a Z80 opcode, or a ZEUS pseudo-op.

The OPERAND field contains operands. An operand is one or two groups of characters
separated by a comma.

The INSTRUCTION field is the “mnemonic”, opcode and operand consecution that is
translated into object code by the assembler.

The COMMENT field, optional, contains remarks.

SOURCE TEXT LINE FORMAT:

FIELDS
<—SYMBOLIC CODE——m—
<—INSTRUCTIONS———
LINE# [LABEL] OPCODE [OPERAND (S)] [; COMMENT]

LINE#: The line number indicates the relative line in the text buffer. ZEUS dynamically
renumbers the text 1, 2, 3, 4, etc. whenever text is added, deleted, or moved. When
ZEUS loads an EDTASM file the line numbers in the EDTASM file are ignored, and the
resulting text is numbered 1, 2, 3, 4, etc. Also, ZEUS does not store the line numbers
in the text buffer.

LABEL: Labels are a string of characters with every character and character case
significant. To distinguish a label from a numeric constant, the first character in a
label must be a @, A through Z, [, \, 1, », _, a through z, {, |, }, or ~. The balance
of the label can also have O through 9, -, =, >, or ?.

COMMENT: A comment begins with a semicolon, and overrides any field.

00348 ;DETERMINE IF ERROR

00349 CALC CALL CALCO
00350 JPp C,CALC2 ;NO ERROR TF CARRY
00351 RET

Line 348 the comment overrides the label field, opcode field, and operand
field.

Line 349 has a label: CALC; an opcode: CALL; and an operand: CALCO.

Line 350 has an opcode: JP; operands: C,CALC2; and a comment: NO ERROR IF
CARRY.

line 351 only has an opcode: RET

Page 1-7

INTRODUCTION

During assembly printing, two additional zones are added.

FIELDS
<—SYMBOLIC CODE———
<—INSTRUCTIONS———
ADDR OBJCODE LINE# [LABEL] OPCODE [OPERAND (S)] [; COMMENT]

ADDR: The ADDR zone contains a hexadecimal number that is either 1) the loading
address for the ORG pseudo-op, 2) the relative address of the current instruction, 3)
the label value for the EQU and DEFL pseudo-ops, 4) the length of the space for the
DEFS pseudo-op, or 5) the transfer address for the END pseudo-op.

OBJCODE: The OBJCODE zone contains the hexadecimal object code translated from the
mnemonics.

00001 ;CDIR

00002 COMM 'CLEARDIR 0985~%* NOTICE **(c)19
85 ** Cosmopolitan **
00003 COMM ! Electronics ** Corporation. **NOTIC
E khkhkhkkhkhkrkkkhkkkkhkxkk*k
0000 00004 QFIG EQU 0
0001 00005 Q@TYP EQU 1
0002 00006 @NOH EQU 2
0008 00007 @SPH EQU 8
0009 00008 @DFS EQU 9
402D 00009 TODOS EQU 402DH
4409 00010 ERROR EQU 4409H
.... {more source text}
5200 00020 ORG 5200H
.... {more source text}
52EA 010000 00028 START LD BC, 0
52ED 2B 00029 DEC HL
52EE TE 00030 LD A, (HL)
52EF FE2C 00031 CP ',
52F1 281cC 00032 JR Z,DFLT
52F3 D7 00033 RST 10H
52F4 3803 00034 JR C, NUM
52F6 2017 00035 JR Nz, DFLT
.... {more source text}
52EA 00192 X END START
Line 1 is a comment line: no object code is produced.
Lines 2 and 3 use the COMM pseudo-op that does not create object code.
Lines 4 - 10 use the EQU pseudo-op. The ADDR zone contains the label values. The
EQU pseudo-op does not produce object code.
Line 20 uses the ORG pseudo-op. The ADDR zone contains the ORG value.

Lines 28 - 35 have object code. The OBJCODE zone contains the object code equivalent
of the OPCODE and OPERAND(S) .
Line 192 has the transfer address in the ADDR zone.

Page 1-8

INTRODUCTION

CONSTANT: A constant is a numeric representation of a value. To distinguish a numeric
the first character must be numeric or the constant must be
enclosed in single quotes. Decimal constants use the digits O through 9, and are
optionally suffixed with the letter D. Binary constants use the digits O and 1, and
are suffixed with the letter B. Hexadecimal constants use the digits O through 9, the
letters A through F,
entire ASCII set and are enclosed in single quotes. The single character dollar sign,
$, is reserved to use as the value of the relative address for the current instruction
in which it appears.

constant from a label,

5310
5311
5314
5315
5317
5319
531D
531F
5321

5384
5385
5386
5387
5388
538A
538C

53DB
53DC
53DD
53DF
53E1
53E3
53E6
53E9
53EB
53EE

EXAMPLES:

4F
CDDA44
D7

FE27
2008
FDCBOOGE
28E2
CBE1l
CDCD53

7D
80
6F
TE
FE20
2802
3E2F

B7

F8
CB67
2017
3EDO
CD9744
CDC944
1636
CD0654
200D

00048
00049
00050
00051
00052
00053
00054
00055
00056

00107
00108
00109
00110
00111
00112
00113

00152
00153
00154
00155
00156
00157
00158
00159
00160
00161l

45666
56eeh
0101101B
FFEDH
OFFEDH
IXI
23145d
'This is'

$

DRVE LD
CALL
RST
CP
JR
BIT
JR
SET

ONES CALL

EON LD
ADD
LD
LD
CP
JR
LD

OR
RET
BIT
JR
LD
CALL
CALL
LD
CALL
JR

and are suffixed with the letter H. ASCII constants use the

decimal constant

hexadecimal constant

binary constant

label {the first character is not numeric}
hexadecimal constant

ASCIT constant

decimal constant

ASCIT constant

relative address constant

C,A {no constants}
GTDCC {no constants}

10H {10H is a constant}
27H {27H is a constant}
NZ, ONES {no constants}

5, (IY+QFIG) {5 is a constant}
Z, IDN {no constants}

4,C {4 is a constant}
ALIVE {no constants}

A, L {no constants}

A,B {no constants}

L,A {no constants}

A, (HL) {no constants}

v {'" ' is a constant}
Z,EOX {no constants}
A,/ {'/'" is a constant}
A {no constants}

M {no constants}

4,7 {4 is a constant}
NZ,ALIVD {no constants}

A, O0DOH {ODOH is a constant}
LWAIT {no constants}
MOTON {no constants}

D, 36H {36H is a constant}
ALIV4 {no constants}
NZ,ALIV2 {no constants}

Page 1-9

INTRODUCTION

EXPRESSION: An expression is a group of characters consisting of two or more constants
and/or labels separated by an operator. Expressions are evaluated (up to 16 bits) in a

left to right order,

label.

The nine ZEUS operators are:

+

%

ADDITION

SUBTRACTION

MULTIPLICATION

DIVISION

Logical OR

Logical XOR

Logical AND

MODULO

SHIFT

EXPRESSION
3EH +23H
456D -8EH
1010B*56
134/19
3eh!4fh
898 #1011B
345 §122
67 $17

34 <2

57 <-3

12 +3 *9+3

maintaining an interim result after processing a constant or

Adds the wvalue following the operator to the interim result
establishing the sum as the new interim result.

Subtracts the value following the operator from the interim
result establishing the difference as the new interim result.

Multiplies the value following the operator to the interim
result establishing the product as the new interim result.

Divides the value following the operator into the interim result
establishing the integer portion of the quotient as the new

interim result.

Logical OR between the value following the operator and the
interim result establishing a new interim result.

Logical XOR between the value following the operator and the
interim result establishing a new interim result.

Logical AND between the value following the operator and the
interim result establishing a new interim result.

Divides the value following the operator into the interim result
establishing the integer remainder as the new interim result.

Shifts the interim result the number of bits of the value
following the operator establishing a new interim result. If the
value following the operator is positive, then the shift is

left, otherwise the shift is right.

OPERATION PERFORMED
addition
subtraction
multiplication
division

logical or

logical xor

logical and

modulo

left shift

right shift
addition, multiplication,

RESULT

97D or 61H
314 or 13AH
560D or 230H
y

127D or 7TFH
905D or 389H
88D or 58H
16D or 10H
136D or 88H
7

138D or 8AH

The operator must be adjacent to the following label or constant.

Page 1-10

PSEUDO-OPS

PSEUDO-OPS

1. COMM Comment.

2. DEFB or DB Define byte(s).

3. DEFL or DL Define label.

4. DEFM or DM Define string(s) and/or byte(s) (define message).
5. DEFS or DS Define space.

6. DEFW or DW Define word(s) .

7. END Terminate assembly.

8. ENIF Delimit conditional assembly.

9. ERR Abort assembly.

10. EQU Set a label to a value (equate a label to a value).
11. GET Include source from a disk file.

12. IF Begin conditional assembly (see ENIF).

13. LIST Control printing.

14. MESP Print and LPrint message.

15. MESV Print message.

16. ORG Establish relative address (origin).

17. PAGE LPrint to top of form (Linefeeds or CHRS$(12) depending on FORMS) .
18. SBTL Establish a subtitle for LPrint (see PAGE).

19. SHOW Override N option (See LIST).
20. TITL Establish the title for LPrint (see PAGE).
21. WAIT Pause assembly.

Pseudo-ops are entered in the instruction field of a source text line.

Page 2-1

PSEUDO-OPS

COMM

COMM — Generate an object file comment block at the beginning of the file. COMM is
primarily used to put a message on the first sector of an object file.

NOTE: A COMM instruction is only recognized if no object code has been generated.
Syntax: 00017 COMM 'STRING
STRING is a string of characters 1 to 63 characters in length, and must be preceded by
a single quote. Subsequent single quotes are considered part of the comment. To create
a comment greater than 63 characters, add an additional line with a COMM instruction
immediately behind the line with the first COMM instruction. ZEUS appends these
STRINGs into one comment.
EXAMPLES:

00003 COMM 'T can't stop loving you.

Generates the comment | can"t stop loving you.

00008 COMM Thkkhkhkkhkkhkhkhkhkhkkkxk My * % best *
00009 COMM Tk Program! *hkkhkkkkhkkhkkkkkkkkk*k

Generates a 78 byte comment block that, when viewed with a ZAP utility, would
appear as:

N**************

* My *
* Best *
* Program! *

khkkkhkkkkhkrkkhkrk kK k%K

The comment block on a disk sector is preceded by two bytes. The first byte is a
05H, and the second byte is the length of the comment. In this example the
second byte is 4EH, which appears as an 'N'.

The layout of this comment is as follows:

Ist line: *xxxxkkkdkdkdkddk {14 *'s plus the two bytes = 16 characters}
*PYBBYYMyBYBYYIB * {16 characters ¥ = one space}
BYBYBBestBBBBL {16 characters}

2nd line: *BPPProgram!pPBB* {16 characters}

B I I b b b b b I i b b g {16 characters}

Page 2-2

PSEUDO-OPS

DEFB

DEFB or DB — Generate a byte(s) at the relative address. DEFB is primarily used to
create one-byte look-up tables.

Syntax: 01333 DEFB BVAL[,BVAL] [,BVAL] [, ...]

BVAL is a constant, expression, or label with a value of 0 to 255. For each byte
generated, the relative address is incremented by one.

EXAMPLES:
00422 DEFB 45
00017 DEFB 46H, 63H, 73H, 74H
00324 DEFB 78,CAT,'U" {CAT is defined elsewhere}

During assembly printing, only the first byte value is printed.

8923 4E 00324 DEFB 78,CAT, 'U"
DEFL
DEFL or DL — Establish a value for a label that can only be redefined with another

DEFL pseudo-op. DEFL is primarily used to perform a complex assembly function. An
example of a complex assembly function is shown at the end of the ENIF pseudo-op
detail. Also, the file PASS/ASM is an example of the DEFL pseudo-op usage.

Syntax: 00389 LABEL DEFL WVAL

WVAL is a constant, expression, or label. If WVAL is a label or an expression with a

label, and the label has not been established, then LABEL has a value of zero on the

first pass. If WVAL is "LABEL" then the value of LABEL is established as the value of
the relative address.

EXAMPLES:
00120 TOPCO DEFL 78BAH {TOPCO = 78BAH}
00121 MAKE DEFL MAKE {MAKE = relative address}
00122 KITTEN DEFL TOPCO-80H {KITTEN = 783AH}
00123 DEFB KITTEN&OFFH {byte value = 3AH}
00124 KITTEN DEFL TOPCO+80H {KITTEN = 793AH}
00125 DB KITTEN<-8 {byte value = 79H}

Page 2-3

PSEUDO-OPS

DEFM

DEFM or DM — Generate a string(s), and/or byte(s) at the relative address. DEFM is
primarily used to insert messages into the object code.

Syntax: 00457 DEFM 'STRING' [,BVAL] [, ...]

Although DEFM contains DEFB in its repertoire, DEFM can generate object code from a
string of ASCII characters enclosed in single quotes.

EXAMPLES:
00317 DEFM 'This is a message.'
00237 DEFM 'This is a message with a terminator.',13
01283 DEFM 28,31, "ERROR', "!'"+80H, 10,13

During assembly printing, only the first byte value is printed.

AB77 1C 01283 DEFM 28,31, "ERROR', "!'"+80H, 10,13
DEFS
DEFS or DS — Increment the relative address by a value that you define. DEFS is

primarily used to retain the contents of a block of memory. The special case, DEFS O,
is primarily used to mark the end of a table for reference purposes.

Syntax: 00017 DEFS WVAL
WVAL is a constant; expression with labels, if any, previously defined; or previously
defined label with a value between 0 and 65535 inclusive. A DEFS pseudo-op generates a

new loading address for the object file, that when loaded, skips over WVAL bytes of
RAM. Therefore, DEFS preserves WVAL bytes of RAM starting at the relative address.

EXAMPLES:

00056 DEFS 256 {leave 256 bytes of RAM untouched when
the object program is loaded into RAM.}

00330 PICBEG DB '‘a', 'b','c','ad','e!', "
00331 PICEND DEFS 0
More source text
00677 LD B, PICEND-PICBEG {loads B with the length of the
table, 6.}

Page 2-4

PSEUDO-OPS

DEFW

DEFW or DW — Generate a word(s) at the relative address. DEFW is primarily used to
create an address table.

Syntax: 00017 DEFW WVAL[,WVAL] [, WVAL] [, ...]
WVAL is a constant; expression with labels, if any, previously defined; or previously
defined label with a value between 0 and 65535 inclusive. For each word generated, the
relative address is incremented by two.

EXAMPLES:

00188 DEFW TEST {TEST is defined elsewhere}

00376 DEFW 4488H,65123,3,12

During assembly printing, only the first word value is printed.

1228 8844 00376 DEFW 4488H,65123,3,12
END
END — Terminate assembly. The END pseudo-op is mandatory in that it directs ZEUS to

ignore any source text that follows. The END pseudo-op in a GET file terminates
assembly of the GET file and resumes assembly from the source text that has the GET
instruction.

Syntax: 00017 END [TRANSFER]

TRANSFER is the address that the DOS program execution routine transfers control
(hopefully) over to your program. This address has also been designated as the program
execution point. TRANSFER can be a constant, expression (unusual), or a previously
defined label.

EXAMPLES:
03122 END {transfer address 0000H}
02883 END 402DH {transfer address 402DH}
00001 ORG 7000H
00002 START LD A, (HL) {START = 7000H}
More source text
02893 RET
02894 END START {transfer address 7000H}

Page 2-5

PSEUDO-OPS

ENIF/IF

ENIF and IF — Conditional assembly pseudo-ops. Conditional assembly provides you with
an efficient tool to create programs for a variety of conditions. Conditional assembly
source text is structured as follows:

00017 IF EXP
Conditional source text
00043 ENIF

If EXP is evaluated to a non-zero value, then the conditional source text is
assembled. If EXP is evaluated to a zero value, then the conditional source text is
not assembled,

or
00017 IF NOT, EXP
Conditional source text
00043 ENIF

If EXP is evaluated to a zero value, then the conditional source text is assembled. If
EXP is evaluated to a non-zero value, then the conditional source text 1is not
assembled.

During an assembly printing the IF and ENIF text lines, regardless of the condition,
are not printed. If the conditional source code is not assembled, then the lines that

contain the conditional source text also are not printed.

Typically, you should incorporate the status for conditional assembly at the beginning
of the source text.

00002 MOD1 DEFL 1
00003 MOD3 DEFL 1-MOD1 {MOD3 = 0}

Then have subsequent code test this status

00789 IF MOD1
00790 LD A, (37ECH)
00791 ENIF
00792 IF MOD3
00793 IN A, (OFOH)
00794 ENIF

EXAMPLE :
00001 ORG 7000H
00002 DOG DEFL DOG-5$
00003 IF NOT, DOG
00004 GET EQU/ASM
00005 ENIF

The GET instruction on line 00003 is only executed on the first pass. The file EQU/ASM
must only have EQUs!

Page 2-6

PSEUDO-OPS

ERR

ERR — Abort assembly and display message. The ERR pseudo-op is usually in a
conditional block of source text, set to assemble if an undesirable situation exists.
ERR may also be used to get the relative address in a program.

Syntax: 00017 ERR 'STRING

If the line containing ERR is assembled, then the line number and relative address is
printed followed by STRING. STRING must be preceded by a single quote.

EXAMPLE:
00001 ORG 7000H
. More source text
01782 RET
01783 ERR 'is the first free byte.
01784 END START

If the relative address of line 1783 is 8A22H, then (during the first pass) an
assembly would produce:

01783 8A22 is the first free byte.

EQU

EQU — Explicitly establish the value for a label. The EQU pseudo-op is primarily used
to make references to constants using labels.

Syntax: 00017 LABEL EQU WVAL

WVAL is a constant; expression with labels, if any, previously defined; or previously
defined label with a value between 0 and 65535 inclusive.

EXAMPLE:
00002 KEYBRD EQU 2BH
00003 VIDEO EQU 33H
00004 PRINT EQU 3BH
00005 LINEIN EQU 40H
00006 KBWAIT EQU 49H
More source text
00345 VLINE LD A, (HL)
00346 CALL VIDEO
00347 INC HL
00348 CP ODH
00349 JR NZ,VLINE
00350 RET

Page 2-7

PSEUDO-OPS

GET

GET — Includes source text from disk file. The GET pseudo-op is used to assemble
large amounts of source text by reading the disk file as source text instead of the
resident text buffer.

Syntax: 00017 GET FILESPEC

If FILESPEC is not found, ZEUS prompts you to insert the diskette with FILESPEC by
printing the message:

Mount the disk with FILESPEC
Press <ENTER> or <SPACE> to continue.

Press <ENTER> or <SPACE> after the proper diskette is mounted, or press <BREAK> to
abort assembly.

An END instruction is not necessary in a GET file. If an END instruction is found in a
GET file or if the end of file is encountered, then assembly resumes in the source

text that has the GET instruction.

574 bytes of RAM are dynamically allocated for each concurrent opened GET file. The
limit of nesting GET files is dependent on the amount of RAM space available.

During assembly printing, the text line with the GET instruction is not printed,
unless the G option of the A command is used. The G option directs ZEUS to bypass the

function of a GET pseudo-ops and print the line with the GET pseudo-op during assembly
printing.

LIST/SHOW

LIST and SHOW — Control assembly printing. The LIST pseudo-op is primarily used
during program development to limit assembly printing to pertinent parts of the
assembled code.

Syntax: 00017 LIST OFF
LIST OFF disables assembly printing, starting with this line,
or

Syntax: 00033 LIST ON
LIST ON enables assembly printing with the following line, provided the N option is

not entered under the A command.

The pseudo-op SHOW overrides the N option under the A command, and enables the LIST
OFF and LIST ON pseudo-ops.

Page 2-8

PSEUDO-OPS

MESP

MESP — This pseudo-op prints a message each pass the MESP pseudo-op is encountered.
If the H option is entered under the A command, then the message also is LPrinted.

Syntax: 03466 MESP 'See here!
Each pass line 3466 is assembled, the message See herel! is printed. The message See

here! is also LPrinted if the H option is entered under the A command. The message
must be preceded with one single quote. Subsequent single quotes are printed.

During assembly printing, the line with the pseudo-op MESP is not printed.

MESV

MESV — This pseudo-op prints a message each pass the MESV pseudo-op is encountered.
The message is not LPrinted even if the H option is entered under the A command.

Syntax: 00882 MESV 'See here!
Each pass line 882 is assembled, the message See here! is printed. The message must be

preceded with one single quote. Subsequent single quotes are printed.

During assembly printing, the line with the pseudo-op MESV is not printed.

ORG

ORG — Establish a new value for relative address. The ORG pseudo-op instructs ZEUS to
start a new load address.

Syntax: 00001 ORG WVAL

WVAL is a constant; expression with labels, if any, previously defined; or previously
defined label between the values of 0 to 65535 inclusive.

The source text may have as many ORGs as you require.

Page 2-9

PSEUDO-OPS

PAGE/SBTL/TITL

PAGE, SBTL, and TITL — Assembly LPrinting pseudo-ops. These pseudo-ops dress up the
assembly LPrinting by placing an optional title and/or subtitle on each page. The PAGE
pseudo-op generates the code(s) necessary to get to the top of the next page. Double
paging is suppressed.

Syntax: 00023 TITL 'STRING TITLE
00024 SBTL 'STRING SUBTITLE
00876 PAGE

TITL is used to place a title, STRING TITLE, on the first line on each page of an
assembly LPrinting. Only the first title is LPrinted, subsequent titles are ignored.
The subtitle, STRING SUBTITLE is LPrinted on the line after title. New subtitles may
be inserted in the source text, but only appears at the next page break. You may use
TITL and SBTL independent of each other. That is you may have a TITL without SBTLs,
and you may have SBTLs without a TITL.

EXAMPLE :
00023 SBTL 'Screen formatting routines.
More source text
00317 SBTL 'The DOG is MAN's best friend.
00318 PAGE

The original subtitle, Screen formatting routines., is printed immediately after
a title string, if a TITL pseudo-op exists. When ZEUS processes lines 00317 and

00318, the pseudo-op PAGE instructs FORMS to generate the necessary code to get

to the next top of form, then establish The DOG is MAN®"s best friend. as the new
subtitle, printing this subtitle on the new page.

If a TITL or SBTL is encountered in a GET file, ZEUS limits the TITL and/or SBTL to a
maximum of 63 characters.

During assembly printing, text lines with TITL, SBTL or PAGE are not printed.

The assembly LPrinting LPrints the page number followed by the date and time the page
starts printing, regardless of the existence of a TITL or SBTL, and inserts one blank
line prior to the source text being LPrinted. A TITL and/or SBTL LPrints prior to the
page number line.

STRING TITLE
STRING SUBTITLE
Page 1, 02/06/86 20:07:50

00001 ;CDIR

00002 COMM 'CLEARDIR 0985~*NOTICE ** (c) 1 985 **
Cosmopolitan **

00003 COMM ! Electronics ** Corporation. * * NOTTI
CE kAhkhkhkkhkhkrkkkhkkkxkhkxkk*k

Page 2-10

PSEUDO-OPS

WAIT

WAIT — Suspends assembly. The WAIT pseudo-op suspends assembly and waits for you to
press <ENTER> or <SPACE> to continue.

Syntax: 00237 WAIT

When a line containing the WAIT pseudo-op is assembled, assembly is suspended and the
message

"Press <ENTER> or <SPACE> to continue."

is printed. If <BREAK> is pressed, ZEUS aborts assembly and returns you to the command
mode. During assembly printing, the text line with the WAIT pseudo-op is not printed.

The WAIT pseudo-op suspends assembly each pass it is encountered.
EXAMPLE :

00345 WAIT
00346 GET LIB1/ASM

You can now mount the diskette with LIB1/ASM at line 345, then press <ENTER> or
<SPACE> to continue with line 346. Keep in mind, if you are creating an object file,
the destination disk for the object file must remain mounted.

You can use the same drive for an EQUates and the object file diskette by using
conditional assembly to read the EQUates diskette on the first pass only.

00001 ;SUPERDUPER

00002 MODEL EQU 2 ; 0=MOD1, 1=MOD3, 3=MOD4
00003 ORG 5200H

00004 LEQUS DL LEQUS-$

00005 IF NOT, LEQUS

00006 IF NOT, MODEL ;MOD1

00007 MESV 'Mount the MODEL 1 EQU diskette.
00008 WAIT

00009 GET EQUATES1/ASM

00010 ENIF

00011 IF NOT, MODEL-1 ;MOD3

00012 MESV 'Mount the MODEL 3 EQU diskette.
00013 WAIT

00014 GET EQUATES3/ASM

00015 ENIF

00016 IF NOT, MODEL-3 ;MOD4

00017 MESV 'Mount the MODEL 4 EQU diskette.
00018 WAIT

00019 GET EQUATES4/ASM

00020 ENIF

00021 ENIF

00022 IF LEQUS

00023 MESV 'Mount the Object diskette.
00024 WAIT

00025 ENIF

Page 2-11

PSEUDO-OPS

In several examples presented, the code lines similar to:

00002 DOG DEFL DOG-5$

00003 IF NOT, DOG
more source text

or

00004 LEQUS DL LEQUS-$

00005 IF NOT, LEQUS

more source text

work as intended when the relative address is not zero. e.
00001 ORG 0
00002 DOG DEFL DOG-$
00003 IF NOT, DOG

more source text
When the relative address is zero, then these examples do
the address is 8000H, every other assembly command causes

assemble.

The best way to design your code would be along the lines

g.r

not work. Similarly, when
the conditional code to

of the following:

00001 ORG 8000H
00002 DOG DEFL VIDEO {EQUated in the file EQUATES/ASM}
00003 IF NOT, DOG
00004 GET EQUATES/ASM
00005 ENIF
more source text
01255 END

Regardless of the relative address when line 2 is processed, this method always works

provided the DEFL label (DOG in this example)
in the following code sequence).

00001;EQUATES/ASM

00002 KEYBRD EQU 002BH
00003 VIDEO EQU 0033H
00004 PRINT EQU 003BH

more source text

In summary,
the control for the conditional assembly instead of using
of:

00005 LABEL EQU LABEL-S.
00006 IF NOT, LABEL
00007 GET EQUATES/ASM

Page 2-12

gets EQUated in the GET file

(see line 3

conditional EQUate GETting should use labels EQUated in the GET file as

the quick and dirty method

COMMANDS

SINGLE KEYSTROKE COMMANDS

PAUSE COMMAND

CURSOR MOVES

SINGLE LETTER COMMANDS:

A

O T m O O w

NC
NE

QU

Assemble.

Calculator.

Global change, and case conversion.
Delete line(s).

Edit line.

Find label.

LPrint format.
LPrint is used to indicate output to the device in the printer DCB.

LPrint line(s).
LPrint is used to indicate output to the device in the printer DCB.

Insert.

LPrint raw data.
LPrint is used to indicate output to the device in the printer DCB.

Remove file.

Load file.

Move/Duplicate line(s).
Remove comments.

Reset buffer.
Opcode/Operand reference.

Print line(s).
Print is used to indicate output to the device in the video DCB.

Exit.
Reference.
Save file.

Print label table.
Print is used to indicate output to the device in the video DCB.

Usage.
View directory.

Recover text on reentry.

Page 3-1

COMMANDS

SINGLE KEYSTROKE COMMANDS

Single keystroke commands are recognized only in the first position.

<> Prints next lower line, if exists, otherwise prints line 1 (first
line)

<> Prints next higher line, if exists, otherwise does nothing.

<ENTER> Prints page from current line.

<SHIFT-ENTER> Prints page to current line, first press. Subsequent presses, prints
page to current line less 14 (16 line video format) or 22 (24 line
video format) .

<SHIFT-T> Prints line 1 (first line).
<SHIFT-4> Prints the highest line.

- {period} Prints current line.

, {comma} Edits current line.

<CLEAR> Clears display.

PAUSE COMMAND

<SPACE> <SPACE> pauses printing, LPrinting or changes under the change
command. After a pause, you can single step with <SPACE>, continue
without pausing with <ENTER>, or abort with <BREAK>.

CURSOR MOVES

<SHIFT-SPACE> Move the cursor to the next TAB position.

<> Move the cursor to the next TAB position.

<> Backspace one position and remove character at the new cursor
position.

<SHIFT-«> Erase all characters previously keyed in, and position cursor to the

first input position.

INTERPRET/ABORT

<ENTER> <ENTER> is used to indicate completion of an input command. All
commands, except the single keystroke commands, are terminated with
<ENTER>.

<BREAK> <BREAK> aborts any command and returns you to the command prompt ">".

Page 3-2

COMMANDS

A — Assemble source code.

Syntax

A[E][G] [H] [J)[N][O][P][Q][S][T[V][nn]][U]<ENTER>

The A command has 11 options:

E

Wait on error. The E option causes ZEUS to wait whenever an error occurs.
After the error message and the offending line is printed, press <SPACE>
to wait on next error or <ENTER> to continue without waiting.

Ignore GET instructions. The G option causes ZEUS to ignore all GET
pseudo-ops, and prints the line with the GET pseudo-op. This is helpful
while debugging a module for "Out of range!", "Expression!", "Overflow!",
and "Redefinition!" errors without assembling the entire source text.

LPrint link to print. The H option links LPrint to print.
Top of form after the label table is LPrinted. The J option is recognized

if the T option is specified along with the H or S option. (Please see the
P option below.)

Printing off. The N option inhibits assembly printing and LPrinting of
non-erroneous lines, and overrides the LIST ON pseudo-op. The N option can
be canceled with the SHOW pseudo-op.

Create an object file. The O option directs ZEUS to write object code to a
filespec you can select. With the O option, the prompt:

Current Filespec: (default) {If a filespec had been used}
Filespec:

is printed. <ENTER> uses the default filespec. ZEUS appends /CMD to a
filename entered without an extension, then searches for the filespec. If
the filespec is found, then the query

Overwrite file (Y/N)?
is printed. Enter <Y> to overwrite file, <N> to return to the filespec
prompt, or <BREAK> to abort assembly. If the filespec is not found, then
the query

Create file (C/N)?

is printed. Press <C> to create a new file, <N> to return to the filespec
prompt, or <BREAK> to abort assembly.

Top of form after the source code is LPrinted. The P option is recognized
if the H or S option is specified. The proper use of the J and P options
are as follows (TOF = top of form):

Source Code, TOF AHP or ASP
Source Code, Label Table, TOF AHTJ or ASTJ
Source Code, TOF, Label Table, TOF AHTJP or ASTJP

Page 3-3

T[nn]

COMMANDS

Quit if an error occurs on the first pass. The Q option terminates
assembly if an error is found during the first pass. After ZEUS makes one
pass (builds label table), ZEUS does not make this first pass again unless
Q is entered as an assembly option, or a disk I/O error occurs, or a C, D,
E, I, L, M, NE, or QU command is invoked. The pseudo-ops IF, DEFS, DS,
EQU, ORG, and END generate first pass and second pass errors if the
corresponding expressions cannot be evaluated — undefined label or
expression error. The total errors include the first pass as well as the
second pass errors, even if the same error is indicated on both passes. If
the A command is executed again, then the total errors are the results of
the second pass only. A repeated label in the label field (redefinition
error) results in first pass errors only.

LPrint assembly listing. The S option directs the assembly to LPrint only.
(The H option without printing.)

Print label table. The T option sorts the labels in ascending alphanumeric
order, then prints the labels and their corresponding hexadecimal values
using NN characters for the width of output (multiple labels wide). If the
H or S option is selected and precedes the T option without Nnn entered,
then LPrint defaults to the character width set under the G command. A V
immediately after T causes the sort to be in label value order.

Ignore "Undefined label!"™ errors. The U option directs ZEUS to ignore all
undefined label errors. This option is useful when a module is assembled
looking for "Out of range!", "Expression!", "Overflow!", and
"Redefinition!" errors. Or if the G option is specified and you want to
avoid "Undefined label!" errors for references to another file.

Options may be 1) in any order, 2) repeated, 3) separated by one or more spaces, 4)
separated by one or more commas, 5) separated by any combination of spaces and commas,
or 6) not separated at all.

EXAMPLES:

ANO is equivalent to: AON or A,O,N or AN O or A, ,0,,N,0,0,N NN

A, N, HKENTER> {Print and LPrint error(s) and error line(s).}

A,N, SK<ENTER> {LPrint error(s) and error line(s).}

AT55H<ENTER> {Print and LPrint source code and label table using 55
characters for the width of the label table.}

ATH<ENTER> {Print and LPrint source code and label table using the video
width characters for the width of the label table.}

A, H, T<ENTER> {Print and LPrint source code and label table using the value of
w-i1 set under the G command for the number of characters for the
width of the label table.}

A Q E<ENTER> {Pause on each error line and terminate assembly after the first

Page 3-4

pass if any errors occurred.}

B — Command mode calculator.

Syntax

Operator

The B command calculates expressions in the range of 0 to 65535 decimal,
integer result in the range of 0000000000000000B to 1111111111111111B binary,

65535 decimal,

EXAMPLES:

COMMANDS

(You may also use the question mark, ?)

Bexpl[operatorexp2] [operatorexp3]([...]<ENTER>
can be:

+ ADD.

- SUBTRACT (also unary).
* MULTIPLY.

/ DIVIDE.

! OR.

XOR.

& AND.

% MODULO.

< SHIFT LEFT.

<- SHIFT RIGHT.

and 0000H to FFFFH hexadecimal.

{<ENTER> and the binary results are left out for clarity}

B 38H
00056 0038H

B 56H+5
00091 005BH

B 500-45H
00431 OlAFH

B 78/9
00008 0008H

B 5!25
00029 001DH

B OF23H#1A44H
05479 1567H

B 5&-5
00001 0001H

B 89%7+23*6
00168 OOA8H

B 89«1
00178 00B2H

B 89<-1
00044 002CH

B 99
00099 0063H

B OAQOH+23H
00195 0O0C3H

B 67D*33
02211 08A3H

B OFE9H/23H
00116 0074H

B 37H!23
00055 0037H

B 89419
00074 004AH

B 23&5/3
00001 0001H

B 89HST
00004 0004H

B OFFFFH<S8
65280 FFOOH

B OFFFFH<-8
00255 O0FFH

B 56+5
00061 O0O3DH

B37-3
0034 0022H

B OAH*0AH
00100 0064H

B 3C00H/4
03840 OFOOH

B OF132H!89DDH
63999 FOFFH

B 99d#78h
00027 001BH

B 89!8&444/2
00012 00OCH

B 12345%2
00001 0001H

B OFFFFH<16
00000 0000H

B 566H/23<-3
00007 0007H

returning an

00000 to

Page 3-5

COMMANDS

If the label table is set, then the labels can be used in expressions.
EXAMPLE :

B OSET*3 {from the file 7Z80Z/ASM}.
00090 005AH

Calculations are performed on a left to right basis. If an expression is missing or an
operator is used improperly, then

Expression?
is printed, and the B command terminates.
EXAMPLE:

B 75-33*
Expression?

If a label is used as an expression, and this label is not found in the label table,
then

Undefined label!
is printed, and the B command terminates.
EXAMPLE:

B UNCLE+3
Undefined label!

However, if the U option was selected, and the B command uses an undefined label, then
the B command simply returns to the command prompt indicating no error.

If the resulting calculation exceeds 65535 decimal (FFFFH hexadecimal), then the
results is a modulo 65536 answer.

EXAMPLE:

B300*512 {300*%512=153600. 153600%65536=22528.}
0101100000000000B 22528 5800H

C — Global change

Syntax C[OPT]STR1/[STR2] [, RELNUMI [/RELNUM2]] <ENTER>
The C command changes STR1 to STR2 from RELNUM1 to RELNUM2 inclusive. Opcodes, and
operands are not changed by the C command. Single quoted text and comments are

untouched, unless OPT is used as specified below. If STR2 is null, then STR1 is
deleted.

Page 3-6

COMMANDS

OPT can be either a single quote, or a semicolon. If OPT is a single quote, then
changes only take place in single quoted text. If OPT is a semicolon, then changes
only take place in comment text.

If a requested change to a line would result in the line exceeding 127 characters in
length, then the message:

Out of Memory!

is printed, and the C command aborts without changing that line.

The C command prints the line before the change occurs and again after the change has
successfully taken place. The <BREAK> key may be used to terminate the C command, and
the <SPACE> bar may be used to pause.

If RELNUM1 is not specified, then line one is used. If RELNUMZ2 is not specified and
RELNUM1 is specified, then RELNUM2 defaults to RELNUMl (single line change). If
neither is specified, then the changes take place over the entire resident source
text. RELNUMs can have a constant offset applied, e.g., RELNUM +22, DOG -3.

EXAMPLES:

C'aborted, terminated {change aborted to terminated, in single quoted text,
throughout the text buffer}

C DOG/,4/37-3 {delete DOG, from line 4 to 34 inclusive}

C CAT/ {delete CAT throughout the text buffer}

C MAN/BOY, ./* {change MAN to BOY, from the current line to the end of
the text buffer}

C ABC/DEF, LOG/<PERK {change ABC to DEF, from the line which has the label

LOG in the label field, to one line less than the line
which has PERK in the label field}

NOTE: The C command processes each changed line through the syntax check routine. If a
requested change would result in an erroneous line, then the E command is invoked,
permitting corrections to the offending line. Although the C command continues after
the line is deemed acceptable, the outcome may not be the desired result. The C
command can be terminated immediately after the edit, by pressing the <ENTER> and
<BREAK> keys simultaneously. The C command can be directed to bypass the syntax
checking by using an exclamation point for OPT, e.g., C!;GET/*[tab]GET

C — Case Conversion

Syntax C"<ENTER> convert to upper case.
C.<ENTER> convert to lower case.

The case conversion affects only labels and constants not enclosed in single quotes.
Text in single quotes, comment text and a filespec in a GET instruction are not
converted. The case conversion does not switch case, it makes all letters upper case,
C", or all letters lower case, C..

Page 3-7

COMMANDS

D — Delete specific line from the text buffer.
Syntax D[RELNUM1 [/RELNUM2]] <ENTER>

The D command removes lines from RELNUMI to RELNUM2 inclusive. If RELNUMI is not
specified, then the current line is used. If RELNUM2 is not specified, then RELNUM2
defaults to RELNUM1l. If RELNUM2 is specified, then RELNUM2 must be equal to or greater
than RELNUMl else a parameter error occurs. RELNUMs can have a constant offset
applied, e.g., RELNUM +22, DOG -3.

EXAMPLES: {current line = 37}

D/. {delete line 37}

D {delete line 37}

D/ {delete line 37}

D. {delete line 37}

D./ {delete line 37}

D37 {delete line 37}

D#/ . {delete lines 1 to 37 inclusive}

D./* {delete lines 37 to the end of the text buffer}

D43/. {results in}
<-- parameter error {RELNUM2Z cannot be less than RELNUMI}

D 35+2 {delete line 37}

D 43/22 {results in}
22 <-- parameter error

EXAMPLE:
00075 RET
00076 LOOP LD A, (HL)
00077 INC HL
00078 OR A
00079 RET z
00080 DJINZ LOOP
00081 DOG LD HL, MOKE
00082 CALL BOTTLE

Lines 76 through 80 can be deleted by one of the following:

1) D76/80 2) D76/<81

3) D76/<DOG 4) D76/D0OG-1

5) D<77/80 6) D<77/<81

7) D<77/<DOG 8) D<77/D0OG-1
9) DLOOP/80 10) DLOOP/<81
11) DLOOP/<DOG 12) DLOOP/DOG-1
13) DLOOP/LOOP+4 14) DDOG-5/DOG-1

The use of labels to delimit a RELNUM range is very useful.

Page 3-8

COMMANDS

E — Edit specific text line.
Syntax E[RELNUM] <ENTER>

The E command enables you to modify the contents of a text line. If RELNUM is not
specified, then the current line is used. When the E command is invoked, the line is
printed with a small transparent rectangular cursor at the first position, and a block
at the end of the physical line. Now you are in the overstrike mode, and any
non-control key replaces the character at the cursor position.

The edit control functions are implemented by pressing the <CTRL> key and one of the
four keys listed below:

A ABORT abort changes and start editing again.

| INSERT shift between overstrike and insert.

D DELETE delete character at cursor.

H HACK delete all characters from cursor to end of line.

(Max-80 MULTIDOS, Model 4 MULTIDOS, or ESOTERIC): when editing a line <F1>, <F2>,
and <F3> can be used in place of <CTRL-I>, <CTRL:-D>, and <CTRL-H> respectively.

In the insert mode, indicated by the rectangular cursor becoming a larger rectangular
cursor, any non-control character is inserted at the cursor position, and the balance
of the line moved right one position. The insert mode drops the 128" character if the
number of characters in a line would exceed 127.

Cursor moves:

<> move right one character position.
Use <SHIFT-SPACE> to insert or overwrite a tab.
<> move left one character position.
<SHIFT-—> move to end of the physical line.
<SHIFT-¢«—> move to beginning of line.

Other control keys:

<BREAK> abort EDIT and leave the line without any changes.

<ENTER> process the modified line through the syntax check routine. If
no error is found, replace the edited line with the modified
line, and exit the E command. If an error is found, the <BREAK>
key is disabled, and the overstrike mode is set. The cursor is
positioned at the first character in the potentially erroneous
symbolic field.

If you find yourself unable to satisfy a forced edit, position the cursor at the first
position and key <;> (make the line a comment), then correct the line after you have
gathered your thoughts.

Page 3-9

COMMANDS

F — Print line with the specified label.
Syntax FLABEL<ENTER>

The F command searches from line one to the end of the source text for the specified
LABEL, and prints the line if the LABEL is found. An initial LABEL is mandatory with
the F command. If the initial LABEL is null, then

Missing information!

is printed. If the LABEL does not exist in the label field, then
Line not found.

is printed.

Once a LABEL is established, the F command finds this LABEL with just F<ENTER>. The F
command can be used to find a line beginning with a comment. If you know the first
word in the comment, enter F;WORD. If the reference command, R, 1is used to reference a
label, then @<ENTER> effects a F label<ENTER> command.

G — Set printer values.

Syntax G[L|N]t,1i,w,p<ENTER>
or
Syntax G<ENTER> prints the current forms settings.

The G command sets up the LPrint characteristics. The parameters are:

L = start adding a line feed after each carriage return.

N = stop adding a line feed after each carriage return.

t = the number of printed text lines per page.

i = the number of spaces indented on each line (left margin).

W = the total line length, including the I parameter (width of paper).
p = the number of physical lines per page (length of paper).

NOTE: If p is less than t, then the value stored for p is added to t.

The total characters printed before ZEUS sends a carriage return is the value of w
less the value of i, i.e., print (wW-1) characters.

EXAMPLES:

G 50,0,80,52<ENTER> {LPrint 50 text lines, of 80 characters maximum on a 52
line page.

G 80,10,132, 88<ENTER> {LPrint 80 text lines, of 122 characters maximum on a 88
line page. The left margin is set to 10 characters

spaces}

G 60,0,80, 6<ENTER> {LPrint 60 text lines, of 80 characters maximum on a 66
line page. NOTE: 66 (60+6) is stored for p.

Page 3-10

H — LPrint line(s).

COMMANDS

Syntax H[RELNUMI1 [/RELNUM2]] <ENTER>

The H command LPrints and prints lines from RELNUMl to RELNUM2 inclusive.
command links the line printer to the video monitor.

displayed as they are sent to the printer.

DOG -3.

EXAMPLES: {current line

H/.

H

H/

H.

H./
H#+36
H33+4
H137-100
H#/.
H./*

H43/.

= 37}

{LPrint
{LPrint
{LPrint
{LPrint
{LPrint
{LPrint
{LPrint
{LPrint
{LPrint
{LPrint

buffer}

{results in}

and
and
and
and
and
and
and
and
and
and

print
print
print
print
print
print
print
print
print
print

line
line
line
line
line
line
line
line

i.e.,

37}
37}
37}
37}
37}
37}
37}
37}

The H

you will see the lines

If RELNUM1 is not specified, then the
current line is used. If RELNUM2 is not specified, then RELNUM2 defaults to RELNUMI.
If RELNUM2 is specified, then RELNUM2 must be equal to or greater than RELNUMl else a
parameter error occurs. RELNUMs can have a constant offset applied, e.g.,

lines 1 to 37 inclusive}
lines 37 to the end of the text

RELNUM +22,

<-- parameter error {RELNUMZ cannot be less than RELNUMI}

H 43/22

EXAMPLE:

00075
00076 LOOP
00077
00078
00079
00080
00081 DOG
00082

Lines 76 through 80 can

1) H76/80

3) H76/<D0OG

5) H<77/80

7) H<T77/<DOG

9) HLOOP/80
11) HLOOP/<DOG
13) HLOOP/LOOP

The use of labels to delimit a RELNUM range is very useful.

{results in}
22 <-- parameter error

RET
LD
INC
OR
RET
DJINZ
LD
CALL

LOOP

HIL, MOKE
BOTTLE

be LPrinted and printed by:
H76/<81
H76/DOG-1
H<77/<81
H<77/DOG-1
HLOOP/<81

+4

HLOOP/DOG-1

HDOG-5/D0OG-1

Page 3-11

COMMANDS

| — Insert line(s).
Syntax I [RELNUM] <ENTER>

The | command is used to insert or add source code into the text buffer immediately
behind RELNUM. If RELNUM is not specified then the current line is used. IO<ENTER> is
used to insert a line ahead of line one in the text buffer.

When you want to create source text with an empty text buffer RELNUM is not required,
i.e., I<ENTER>.

The | command prints a five digit line number one unit higher than RELNUM followed by
a space and waits for you to key in text. Use <SHIFT-SPACE> or <—> to insert a tab.
After a text line is keyed in and terminated with <ENTER>, the line is processed
through the syntax check routine. If no error is found, then the line is inserted into
the text buffer. If an error is found, the | command is suspended, the <BREAK> key
disabled, and the E command is invoked, with the edit function in the overstrike mode.
The cursor is positioned at the first character in the potentially erroneous symbolic
field. After subsequent modifications have corrected the erroneous line, the | command
resumes.

The | command continues to print a line number one unit higher than the previously
entered line. To exit the | command press <BREAK>.

J— Raw data to Lprint.

Syntax J<ENTER> {Software top of form.}
Syntax Jdata<ENTER> {bypasses FORMS}

The use of Jdata completely bypasses ZEUS (or the DOS) FORMS and/or any RAM or
DISK spooler. This function is provided to send special codes directly to the
printer to control special printer functions.
EXAMPLES:

J27,69 J 1BH, 45H J 27,'E' J 1BH,'E'

J 'z','e','u','s',13<ENTER> {LPrints "Zeus".}

After you have LPrinted source code, you can key J<ENTER> to position the paper to the
next top of form.

During ZEUS initialization, ZEUS sends the bytes located on relative file sector zero,
relative byte 80H through 94H (20d bytes) to the printer for any special printer
initialization. The code string cannot have an intervening zero byte value, may be as
little as one byte or as many as 20 bytes, and is terminated by a 00H byte.

Page 3-12

COMMANDS

K — Remove filespec.
Syntax K[filespec] <ENTER> {auto /ASM.}
If the filespec was not entered in the command prompt, then

Current Filespec: (default)
Filespec:

is printed. Press <ENTER> for the default filespec, <BREAK> to abort, or key in
another filespec then press <ENTER>.

L — Load source file.
Syntax L[OPT1] [filespec] [OPT2]<ENTER> {auto /ASM.}

If OPT1 = #, then load an ASCII format file.

If OPT1 *, then load an EDTASM format file.

If OPT1 %, then load an EDTASM format file without header.
(Source code produced by NEWDOS/80's DISASSEM/CMD)

If there is source text in the buffer, then
Append to buffer?

is printed. Respond <Y¥>, <N>, or <BREAK>. If the filespec was not entered in the
command prompt, then

Current Filespec: (default)
Filespec:

is printed. Press <ENTER> for the default filespec, <BREAK> to abort, or key in
another filespec then press <ENTER>.

OPT2 is wvalid for loading files using OPT1. OPT2 directs ZEUS to skip over OPT2 number
of lines before loading source code into the text buffer. This feature is useful when
a disassembler produces source code and the source code is larger than the text
buffer. If the source code is very large, then using OPT2 can segment it. If you are
loading source code and you receive an "Out of memory!" error message, then use OPT2,
with several hundred lines for overhead.

Let’s say the "Out of memory!" error occurred after loading 2675 lines of the file
ROM/ASM. An easy way to partition this source code is to delete the last 675 lines by
D2001/*<ENTER>. Save the source code in the text buffer, using a different filename --
S ROM1<ENTER>. Now load the same file again using OPT2 = 2000 i.e., L%ROM 2000<ENTER>.
If you receive an "OUT of memory!" error message again -- line 2736, delete lines 2001
to 2736, and save this as ROM2. You have just saved two files of 2000 lines each. Both
files are numbered 1 to 2000. The next load would use OPT2 = 4000 i.e., L%ROM
4000<ENTER>.

Page 3-13

COMMANDS

M — Move or duplicate text lines.
Syntax M[!] [RELNUM1 [/RELNUM2]], RELNUM3<ENTER>

The M command moves RELNUM1 to RELNUM2 inclusive, behind RELNUM3. If RELNUM1 is not
specified, then the current line is used. If RELNUM2 is not specified, then RELNUM2
defaults to RELNUMl — single line move. If RELNUM2 is specified, then RELNUM2 must be
equal to or greater than RELNUM1. RELNUM3 is required and must be greater than RELNUMZ2
or less than RELNUMI.

RELNUMs can have a constant offset applied, e.g., RELNUM +2, DOG -3.

If ! is specified, then the lines in the range of RELNUM1 to RELNUM2 inclusive are
duplicated behind RELNUM3.

EXAMPLES:
M LOOP/<DOG, 483 {moves the lines from LOOP to one line less than DOG
behind line 483}
M 23,44 {moves RELNUM 23 behind RELNUM 44}
M 12/23,44 {moves RELNUMs 12 through 23 behind RELNUM 44)

If you attempt to move a block of text greater than the available memory, then ZEUS
moves the text in multiple moves printing an M for each multiple move (the number of
moves is the number of Ms printed plus one).

NC — Remove remarks/blank lines.
Syntax NC<ENTER>

Removes all remarks and all blank lines in the text buffer.

NE — New text buffer.
Syntax NE<ENTER>

Resets all pointers. The text is recoverable if you exit ZEUS then re-enter ZEUS with
<X> as the first key press.

Page 3-14

COMMANDS

O — Opcode/operand reference.
Syntax O[#]STRI<ENTER>

The O command searches from line one for the first occurrence of STR1. STR1 can be any
combination of labels, tabs, opcodes, or operands.

If # is specified, then the O command prints the line numbers STR1 is found in and the
total occurrences.

EXAMPLE :
OLD[tab]A, (HL)<ENTER> {locates LD A, (HL) .}
If STR1 is found, then subsequent O<ENTER>'s find the next occurrence of STR1 until
Text end.
is printed. A subsequent reference restarts at line one.

If STR1 is found, then O#<ENTER> prints all remaining line numbers with STR1.

P — Print line(s).
Syntax P[RELNUMI [/RELNUM2]] <ENTER>

The P command prints text lines from RELNUM1 to RELNUM2 inclusive to the device in the
video DCB. If RELNUMl is not specified, then the current line is used. If RELNUM2 is
not specified, then RELNUM2 defaults to RELNUM1l. If RELNUM2 is specified, then RELNUMZ2
must be equal to or greater than RELNUMl else a parameter error occurs. The P command
is similar to the H command except the listing is only directed to the device in the
video DCB. RELNUMs can have a constant offset applied, e.g., RELNUM +22, DOG -3. If
RELNUM1 is a number then the P may be omitted. i.e., P23<ENTER> or 23<ENTER> prints
line 23; P33+6<ENTER> or 33+6<ENTER> prints line 39.

QU — Exit ZEUS.
Syntax QU<ENTER>.

If ZEUS has detected a change in the source text and you haven't saved the changes
then:

Changes to text not saved.
Quit (Y/N)?

is printed. Press <BREAK> to return to the command mode, enter <Y> to exit, or <N> to
save the file and exit.

Page 3-15

COMMANDS

R — Reference.

Syntax R[#]STR1<ENTER>
The R command searches from line one for the first occurrence of STR1. STR1 is ASCII
text and not opcodes or operands. The O command is used to find opcodes and/or

operands.

If # is specified, then the R command prints the line numbers STR1 is found in and the
total occurrences.

EXAMPLE:
R DOGGY<ENTER> {locates DOGGY.}
If STR1 is found, then subsequent R<ENTER>'s find the next occurrence of STR1 until
Text end.
is printed. A subsequent reference restarts at line one.
If STR1 is found, then R#<ENTER> prints all remaining line numbers with STRL1.

If STR1 is found, @<ENTER> effects the command F STRI<ENTER>.

S — Save file in text buffer.
Syntax S[OPT1] [filespec] [OPT2]<ENTER> {auto /ASM}
If OPT1 = #, then save is in ASCII format.
*

If OPT1 = *, then save is in EDTASM format.
If OPT1 = %, then save is in EDTASM format without header.

OPT2 is used with OPT1 to start the save after OPT2 number of lines. If OPT1 is * or
%, and OPT2 is used, then the saved text has the first line number of OPT2 + 1. e.g.,
S*TTONE, 1400<ENTER>, would save text starting with line number 1401 and the first line
number in the file TTONE/ASM would also be 1401.

If the filespec was not in the command prompt, then

Current Filespec: (default)
Filespec:

is printed. Press <ENTER> for the default filespec, <BREAK> to abort, or key in
another filespec and press <ENTER>.

Page 3-16

COMMANDS

T — Sorted label table printing.
Syntax T[V] [nn] <ENTER> {nn = 1 to 252}

V directs the sort to be in label value order.

nn is the number of columns for the label table.

If nn = 0 or not specified, then the number of columns defaults to the
video width or the printer width.

After ZEUS completes pass one, the label table is set (a disk I/O error, or the
completion of a C, D, E, I, L, M, or NE command resets the label table). The T command
sorts a set label table in ascending alphanumeric order, printing the label table in
the format:

LABEL 0000 LABEL 0000 LABEL 0000 LABEL 0000 LABEL 0000
where LABEL represents the name of the LABEL and 0000 is the hexadecimal address of

the LABEL, the last defined (DEFL, DL) value of the LABEL, or the EQUated value of the
LABEL.

U — Memory usage.
Syntax U<ENTER>

The U command prints the memory usage.
EXAMPLE:

ZEUS Z80Z<ENTER>

AN<ENTER>

U<ENTER>

16139 source {source text usage.}

00035 table {memory for labels in label table.}

00000 GET {memory GET files used.}

30416 free {unused. } NOTE: the amount of free space depends
on the operating system and hi-memory
usage.

After the label table is sorted, the U command prints the number of labels after
“table”

EXAMPLE:

T<ENTER>

BYTE 0048 DISP 8032 OSET 001E WORD 8BAO 2807z 8000
U<ENTER>

16139 source

00035 table 0005

00000 GET

30416 free

Page 3-17

COMMANDS

V — View directory (Max-80 MULTIDOS, Model 4 MULTIDOS, or ESOTERIC).

Syntax V[[:]d["]]<ENTER>
d = drive number (0 to 7)

EXAMPLE :
V1<ENTER> {directory of drive 1}

If the directory has more files that can be printed on the display, then the V command
pauses. Press <SPACE> to print another line of files or <ENTER> to print up to one
more screen of files.

X — Recover source text on reentry to ZEUS.
<X> must be the first key pressed upon entry to ZEUS.
EXAMPLE :

ZEUS Z80Z<ENTER>
QU<ENTER>
ZEUS<ENTER>

X

01144 text lines.

In this example 1144 lines of source code was recovered, indicated by “01144 text
lines”. If you did not press <X> as the first key and wanted to recover text, exit
ZEUS with QU<ENTER> then re-initialize ZEUS, and press <X>.

ZEUS is a two pass assembler. The first pass creates the label table, and establishes
the values for DEFS, DS, END, EQU, and ORG pseudo-ops. If there are no first pass
errors, then the first pass complete status byte is set, and ZEUS continues with the
second pass. The second pass outputs in accordance with the selected options (H, N or
S), then prints the total errors. When the second pass is complete, the second pass
status byte is set. Additional A commands with the second pass status byte set is
instant assembly of the source code in the text buffer. This feature enables you to
assemble with AN, to check for assembly errors. If there are no errors, proceed with
ANO for the creation of an object file. Top speed is obtained if most of the code is
in the text buffer.

(Max-80 MULTIDOS, Model 4 MULTIDOS, or ESOTERIC): Function key F4 (<RIGHT-SHIFT-F1>
for MULTIDOS or ESOTERIC) dynamically displays the amount of free memory in the
upper right hand corner of the display with the current line displayed below the
amount of free memory. Function key F5 (<RIGHT-SHIFT-F2> for MULTIDOS or ESOTERIC;
(<sHIFT-F4> Max-80 MULTIDOS) disables display. MULTIDOS or ESOTERIC: Function
key F6 (<RIGHT-SHIFT-F3>) displays the cursor position in front of the amount of free
memory.

Page 3-18

ERRORS and SOURCE TEXT

Errors encountered with ZEUS are separated into two modes: command mode and assembler
mode. Assemble mode errors are divided into two categories: terminal and warning.
Terminal errors print the error message, terminate assembly, and return you to the
command mode. Warning errors print the error message, and continue assembly. If the O
option is specified, then the resulting object code probably is not what you want.

COMMAND MODE
1." " is not recognized!
Printed if:
a) the first character in a command is not recognized, or

b) an option for the A command is not recognized.

=<ENTER>
"=" is not recognized!

ATNK<ENTER>
"K" is not recognized!

2. <-- Parameter error.

Printed if a command’s RELNUM parameter is not within proper limits.

00078 DOG IN A, (MOUSE)
00079 OR A

00080 JR Z, DOG
00081 CAT LD (HL) , A

D CAT/DOG <ENTER>
DOG <-- parameter error.

3. Label or line not found.

Printed if:

a) the label in the F command is not in the text buffer, or

b) the target for the R or O command does not exist, or

c) a RELNUM parameter does not exist for the D, E, H, I, M, or P command.

D DOG/COT<ENTER>

Line not found.

4. No Text

Printed if a command requires source text in the text buffer, and the text
buffer is empty.

NE<ENTER>

A<ENTER>
No text

Page 4-1

ERRORS and SOURCE TEXT

5. Out of Memory!

Printed if:

a) the C command would change a line to a length greater than 127 characters, or

b) the E command modifies a line to a length that will not fit in the available
memory, Or

c) the I command is inserting a line that will not fit in the available memory,
or

d) the M command attempts to duplicate a block of text larger than the amount of
free memory.

M!1/2000, 2000<ENTER>
Out of memory!

6. Reference what?

Printed if just R or O is entered and the R or O command has not established a
reference target.

R<ENTER>
Reference what?

7. Missing information!

Printed if:

a) there has never been a label behind the F in the F command, or

b) the C command did not have a slash indicating the termination of the target,
or

c) if the C command has no target.

F<ENTER>
Missing information!

C TARGET REPLA<ENTER>
Missing information!

C<ENTER>
Missing Information!

C/REPLA<ENTER>
Missing information!

Page 4-2

ERRORS and SOURCE TEXT

8. Text end.
Printed when the R or O command has searched to the end of text.

R<ENTER>
Text end.

9. Expression!

Printed if the B command has an expression with a constant greater than 65535, a
constant containing a non-constant character, or an expression with a missing or
extra operator.

B 89UI<ENTER>
Expression!

10. Load errors.

The DOS error 22H, "Load file format error" is invoked if:

a) an attempt to load a modified EDTASM file and the % option is missing, or

b) an attempt to load an EDTASM file and the * option is missing, or

c) an attempt to load a file using the * option and the file is not in EDTASM
format.

If you attempt to load an ASCII format file, without the # option, the text
buffer is not changed.

If you specify either the % or # option, and the file is not in the correct

format, ZEUS invokes the edit command. To exit the forced edit and abort the
load, press <SHIFT-<—>, then press <;>, then press <ENTER> and <BREAK> at the
same time.

Page 4-3

ERRORS and SOURCE TEXT

ASSEMBLER
1. Unrecognized character.
TERMINAL/first pass.

Printed if an unrecognized character is encountered in the source code.
occurs when a GET file is in EDTASM or ASCII format. And the " " is not
recognized message is printed after the offending line is printed.

*SHOW/ASM

Unrecognized character.
0017 44094958 00013 ,DE
"," is not recognized!

2. Expression!

WARNING/first and second pass for ORG, END, IF, DS, DEFS, and EQU.
WARNING/second pass.

Printed if:

a) a constant is greater than 65535, or

b) a constant contains a non-constant character, or
c) an expression with a missing or extra operator.

LD A, 66G
XOR 99999
LD (8400H+) , HL

Expression is set to ZERO regardless of the interim results before the error.

3. No End!

TERMINAL/first pass.

Printed if the end of the RAM resident source text file is encountered before an
END instruction is found. (ZEUS ignores all text in a conditional source block
of text that is not assembled. i.e., You might have an END instruction but also

have an IF without a corresponding ENIF.)

4. Out of memory!
TERMINAL/first or second pass.
Printed if:

a) insufficient memory is available for the label table, or
b) 574 bytes are not available to GET a file.

Page 4-4

ERRORS and SOURCE TEXT

5. Out of range!

WARNING/second pass.

Printed if:
a) the relative addressing displacement requirement is not in the range of -126
to +129 bytes from the relative address.

The relative addressing displacement is a signed two's complement number that
is added to the relative address after this instruction, $+2. The relative
addressing displacement can be in the range of $+2-128 to $+2+127, i.e.,
$-126 to $+129.

or

b) the indexed addressing displacement is not in the range of a signed two's
complement number (-128 to +127).

If this error is encountered, ZEUS substitutes a displacement of -2, OFEH.

Out of range!

ASDB

28FE 00023 JR Z,MONKEY {MONKEY is A920H}

Out of range!

8765 FD36FE10 00987 LD (IY+0EDH) , 16
6. Overflow!
WARNING/second pass.
Printed if a byte requirement was satisfied with a value greater than 255.
Overflow!
9A23 3EFD 00234 LD A,-3
If the word LSB is desired use WORD&OFFH or WORD&255.
9A23 3EFD 00234 LD A, -3&0FFH

Although this example would produce the correct object code, the warning error
is printed in cases where you wanted to use a register pair and you
inadvertently keyed in one-half of the register pair, e.g.,

LD E,-50
or LD D, -50
instead of LD DE, -50

Page 4-5

ERRORS and SOURCE TEXT

7. Redefinition!
WARNING/first pass.
Printed if a label in the label field is identical to a previously encountered

label in the label field. When a label is first encountered in the label field
it is defined to a value.

00001 ORG 7800H
00002 TEST LD A, (HL)
00003 TEST INC HL
00004 OR A
00005 JP NZ, TEST
00006 END

Redefinition!

7801 23 00003 TEST INC HL

{Printed on the first pass only. The value for TEST is 7800H.}

ZEUS does not flag the label that is redefined; and, the F command finds the
first and only the first occurrence of the label.

8. Undefined label!

WARNING/first pass for ORG, END, IF, DS, DEFS, and EQU.
WARNING/second pass.

Printed if a label in the operand field has not been defined.
Undefined label!

A971 C30000 00923 Jp DOGGY

Undefined label!
7845 210000 00344 MANUAL LD HL, FORT+CATTLE

9. ENIF without IF!
TERMINAL/first pass.

Printed if an ENIF is encountered without a corresponding IF.
e.g., source text: 00478 ENIF

00478 73DE ENIF without IF!

Page 4-6

ERRORS and SOURCE TEXT

GENERAL INFORMATION

1. If a WARNING error occurs while ZEUS is processing a GET file, then, before ZEUS
prints the WARNING message, the name of the GET file is printed preceded by a
quantity of asterisks indicating the nesting level.

**HOWLER/ INC
Expression!
8923 CD000O 00233 CALL DOG+

The file HOWLER/INC is in a GET instruction of a file that is in a GET
instruction of the RAM resident source text.

2. ZEUS has no special requirements for source text lines. A source text line may
be blank, contain a semicolon only, or contain a label only.

00023

00024

00025 ;

00026 CATER {CATER is valued at the relative address.}
00027

00028 CALL MAXI {a reference to CATER is here.}
00029 ;

00030 MAKER {same as MAKER EQU S}

3. The conditional assembly implemented in ZEUS does not support alternate
conditional assembly. However, certain aspects of alternate conditional assembly
can be implemented with nested IF's or the use of NOT. If you want to see if an
expression is equal to another expression, then you would use the format:

00999 IF NOT, EXP1-EXP2
01000

Assembly would continue with line 1000 if EXP1l equals EXP2.

Page 4-7

ERRORS and SOURCE TEXT

The following sequence of code aborts assembly if the program exceeds the value
This example shows you how to ensure that your program
does not exceed the space allocated. The ORG statement in line 2 is put there
for clarity. Lines 3 and 4 are the last two lines of your source code.

that MAXI is EQUated to.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014

How about?

00001
00002
00003
00004
00005
00006
00007
00008
00009

Page 4-8

;LIMIT/ASM

PEND

MAXTI
SSUB

ORG
XOR
RET
LIST
EQU
EQU
IF
IF
ORG
ERR
ENIF
ENIF
IF
IF
ORG
ERR
ENIF
ENIF
END

07FFEH
B
;End of object code.
OFF
O7FFFH ;Last byte that can be used.
PEND<-15

NOT, MAXI<-15#SSUB
MAXTI-PEND<-15
$-1

'Code is too long!

MAXI<-15#SSUB
SSUB
$-1

'Code is too long!

;This short program is a demonstration of the way
; ZEUS can detect which PASS is being executed.
;Lines 6 - 13 is all a source file requires

;to detect which PASS is being executed.

; PASS
PAS2

PAS1

PASS

DIDI

DL
IF
MESV
DL
ENIF
IF
MESV
ENIF
END

DL
IF
MESV
ENIF
IF
MESV
ENIF
EQU
END

PAS1

NOT, PAS2
'Executing pass 1.
1

PAS2
'Executing pass 2.

DIDI {something that gets equated — see line 8}
NOT, PASS
'Executing pass 1.

PASS
'Executing pass 2.

23

ERRORS and SOURCE TEXT

TOKEN VALUES

ZEUS tokenizes opcodes and operands when you enter a source text line. The token
values for some opcodes are the same for the operands.

OPERAND OPCODE VALUE OPCODE VALUE
B NOP 80H BIT AFH
C RLCA 81H RES BOH
D RRCA 82H SET B1H
E RLA 83H ADC B2H
H RRA 84H SBC B3H
L DAA 85H ADD B4H
(HL) CPL 86H DEC B5H
A SCF 87H INC B6H
BC CCF 88H CALL B7H
DE HALT 89H RET B8H
HL DI 8AH Jp BOH
SP EI 8BH RST BAH
(BC) EXX 8CH IN BBH
(DE) NEG 8DH OouT BCH
AF RLD 8EH EX BDH
AF' RRD 8FH PUSH BEH
NZ LDI 90H POP BFH
Z CPI 91H LD COH
NC INT 92H JR ClH
NOT OUTI 93H DJINZ C2H
PO LDIR 94H M C3H
PE CPIR 95H ENIF C4H
P INIR 96H END C5H
M OTIR 97H ORG C6H
(C) LDD 98H EQU CTH
I CPD 99H IF C8H
R IND 9AH COMM C9H
(SP) OUTD 9BH SBTL CAH
HX LDDR 9CH TITL CBH
LX CPDR 9DH LIST CCH
HY INDR 9EH GET CDH
LY OTDR 9FH PAGE CEH
OFF RETI AQOH ERR CFH
ON RETN AlH DEFS DOH
IX AND A2H DS D1H
IY CP A3H DEFL D2H
(IX) OR A4H DL D3H
(IY) SUB ASH DEFM D4H
(IX XOR A6H DM D5H
(IY RL ATH DEFB D6H
(n RLC A8H DB D7H
n RR ASH DEFW D8H
RRC AAH DW DSH
SLA ABH WAIT DAH
SLL ACH SHOW DBH
SRA ADH MESV DCH
SRL AEH MESP DDH

Page 4-9

ERRORS and SOURCE TEXT

LINE FORMAT

The first byte is the length of the text line including the terminating carriage
return. The second byte bits are defined as:

BIT If set
7 DB, DEFB, DM, DEFM, DW or DEFW instruction.
6 The line contains a label and opcode.
5,4,3 If these bits are:
0 0 1 RST opcode
0 1 0 has one byte to evaluate
0 1 1 CB opcode
1 0 1 has two bytes to evaluate
1 1 0 has one word to evaluate
1 1 1 BIT, SET, RES opcode
2,1,0 These bits hold the length of the object code, except for DB, DEFB,

DM, DEFM, DW or DEFW pseudo-ops.

The third through sixth bytes (if required) are used to hold the object code. The
fourth through sixth are used if the object code is more than one byte. The balance of
the line depends on the contents, and the last byte is a carriage return, ODH.

EXAMPLES:
The ??s are initially 00, and change when the source code is
assembled.
01874 LD A, (HL)

is stored as: OA 01 7E 09 CO 09 87 2C 86 0D

00237 LD A,FAST
is stored as: OE 12 3E »2? 09 CO 09 87 2C 46 41 53 54 0D

00588 LOOP BIT 7, (IX+FILE)
is stored as: 17 7C DD CB ?? 46 4C 4F 4F 50 09 AF 09 37 2C A6 2B 46 49
4C 45 29 0D

00001; COMMENT
is stored as: 0B 00 3B 43 4F 4D 4D 45 4E 54 0D

00067 CALL 33H
is stored as: 0C 33 CD 2?2 2?2 09 B7 09 33 33 48 0D

00892 {blank line}
is stored as: 03 00 0D {i.e., a blank line uses 3 bytes}
004061 LD HL, (BASBF)

is stored as: 12 33 2A 2?2 2?2 09 CO 09 8A 2C 28 42 41 53 42 46 29 0D

01587 POINT DW RUP, FRM18, BEEO, PUTT
is stored as: 20 F2 2?2 2? 50 4F 49 4E 54 09 D9 09 52 55 50 2C 46 52 4D
31 38 2C 42 45 45 30 2C 50 55 54 54 0D

Page 4-10

8-BIT LOAD

LD r,s

BINARY: 0Olppprgggq if ris B, C, D, E, H, L, (HL), or A
11311101 0O lpppl11O0 if S is HX, LX, HY, or LY
11311101 [01110qggqgq]| ifr is HX, LX, HY, or LY

HEX:

s B C D E H L (HL) A HX LX HY LY
ggq (000 |001 (010 (011 |100 101 |110 (111
j 0 0 1 1
r | ppp | J
B 000 40 41 42 43 44 45 46 47 |DD44|DD45(FD44|FD45
C 001 48 49 47 4B 4C 4D 4E 4F |DD4C|DD4D|FD4C|FD4D
D 010 50 51 52 53 54 55 56 57 |DD54|DD55(FD54 |FD55
E 011 58 59 5A 5B 5C 5D 5E 5F |DD5C|DD5D|FD5C|FD5D
H 100 60 61 62 63 64 65 66 67
L 101 68 69 6A 6B 6C 6D 6E 6F
(HL) 110 70 71 72 73 74 75 77
A 111 78 79 TA 7B 7C 7D TE 7F |DD7C|DD7D|FD7C|FD7D
HX O ||DD60|DD61 |DD62|DD63 DD67|DD64 | DD65
LX O ||DD68|DD69|DD6A|DD6B DD6F |DD6C | DD6D
HY 1 ||FD60|FD61|FD62|FD63 FD67 FD64 |FD65
LY 1 ||FD68|FD69|FD6A|FD6B FDOF FD6C|FD6D

FLAGS: No change

TIMING: ifr is B, C, D, E, H, L, or A: 1 M cycle, 4 T-states.
If I is HX, LX, HY, or LY: 2 M cycles, 8 (4,4) T-states.
If is (HL)or S is (HL): 2 M cycles, 7 (4,3) T-states.

DESCRIPTION: =« If T is B, C, D, E, H, L, A, HX, LX, HY, or LY: Register I is loaded
with the contents of register S.
e« If I is (HL): The memory location of the HL register pair is loaded
with the contents of register S.
e« If S is (HL): Register I is loaded with contents of the memory location
of the HL register pair.

Page 5-1

LD

rn

8-BIT LOAD

if ris B, C, D, E, H, L, (HL), or A

nn if r is HX, LX,

HY, or LY

3) T-states.
T-states.

or LY: Register I is loaded

BINARY: O 0pppl1l10 nnnnnnnn
11311101 001 0g1l110O0 nnnnnn
HEX:
r ppp q
B 000 06 n
C 001 OE n
D 010 16 n
E 011 1E n
H 100 26 n
L 101 2E n
(HL) | 110 36 n
A 111 3E n
HX 0 0 DD26 n
LX 0 1 DD2E n
HY 1 0 FD26 n
LY 1 1 FD2E n
FLAGS: No change
TIMING: Ifr is B, C, D, E, H, L, or A: 2 M cycles, 7 (4,
If I is HX, LX, HY, or LY: 3 M cycles, 11 (4,4,3)
If is (HL): 3 M cycles, 10 (4,3,3) T-states.
DESCRIPTION: =« 1f T is B, C, D, E, H, L, A, HX, LX, HY,
with the one-byte value N.
e If I is (HL): The memory location of the HL register pair is loaded
with the one-byte value N.
Page 5-2

LD A,(rr)

BINARY: 000p1 010
HEX:

rr P

BC 0 0A

DE 1 1A

FLAGS: No change

TIMING: 2 M cycles,

DESCRIPTION:

8-BIT LOAD

T-states.

The Aregister is loaded with the contents of the memory location of
register pair IT.

Page 5-3

8-BIT LOAD

LD (m),A

BINARY: 0 00pO0O01O0

HEX:

rr P

BC 0 02

DE 1 12

FLAGS: No change
TIMING: 2 M cycles, 7 (4,3) T-states.

DESCRIPTION: The memory location of register pair IT is loaded with the contents of
the Aregister.

Page 5-4

8-BIT LOAD

LD A,(mn)

BINARY: 00111010 nnnnnnnn mmumImaIumTImimm

HEX:

3A nm

FLAGS: No change
TIMING: 4 M cycles, 13 (4,3,3,3) T-states.

DESCRIPTION: The A register is loaded with the contents of memory location MN.

Page 5-5

8-BIT LOAD

LD (mn),A

BINARY: 00110010 nnnnnnnn mmumimIumTImimm

HEX:

32 nm

FLAGS: No change
TIMING: 4 M cycles, 13 (4,3,3,3) T-states.

DESCRIPTION: The memory location MN is loaded with the contents of the A register.

Page 5-6

LD r,(ir+d)

8-BIT LOAD

BINARY: 11 gl11101 0Ol pppl10O0 dddddddd
HEX: .
ir IX IY
q 0 1
r ppp
B 000 DD46 d FD46 d
C 001 DD4E d FD4E d
D 010 DD56 d FD56 d
E 011 DD5E d FD5E d
H 100 DD66 d FD66 d
L 101 DD6E d FD6E d
A 111 DD7E d FD7E d

FLAGS: No change

TIMING: 5 M cycles,

DESCRIPTION:

19 (4,4,3,5,3)

T-states.

Register I is loaded with the contents of the memory location determined

by the sum of the index register ir plus the displacement d. The

displacement is a two's complement byte value in the range of -128 to

+127.

Page 5-7

8-BIT LOAD

LD (ir+d),r

BINARY: 11 gl11101 01 110pppP dddddddd
HEX: .
ir IX IY
q 0 1
r ppp
B 000 DD70 d FD70 d
C 001 DD71 d FD71 d
D 010 DD72 d FD72 d
E 011 DD73 d FD73 d
H 100 DD74 d FD74 d
L 101 DD75 d FD75 d
A 111 DD77 d FD77 d

FLAGS: No change

TIMING: 5 M cycles, 19 (4,4,3,5,3) T-states.

DESCRIPTION: The memory location determined by the sum of the index register If plus
the displacement d is loaded with the contents of register . The

displacement d is a two’s complement byte value in the range -128 to
+127.

Page 5-8

8-BIT LOAD

LD (ir+d),n

BINARY: 11 gl1l11101 00110110 dddddddd nnnnnnnn

HEX:
ir q

IX 0 DD36 d n

IY 1 FD36 d n

FLAGS: No change
TIMING: 5 M cycles, 19 (4,4,3,5,3) T-states.
DESCRIPTION: The memory location determined by the sum of the index register il plus

the displacement d is loaded with the one-byte value N. The displacement
is a two's complement byte value in the range -128 to +127.

Page 5-9

8-BIT LOAD

EX AFAF

BINARY: 00001O000O0

HEX:

08

FLAGS: The contents of flag register F’.

TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: The contents of the main AF register pair is exchanged with the contents
of the alternate AF register pair, AF.

Page 5-10

8-BIT LOAD

LD sr,A

BINARY: 11101101 01 00p11l1

HEX:
sr| p

I 0 ED47

R 1 ED4F

FLAGS: No change
TIMING: 2 M cycles, 9 (4,5) T-states.
DESCRIPTION: The special purpose register SI is loaded with the contents of the A

register. | is the interrupt vector register, and R is the memory
refresh register.

Page 5-11

LD A,sr

8-BIT LOAD

BINARY: 11101101 01 01lpl1l1
HEX:
sr| p
I 0 ED57
R 1 EDSF
FLAGS: S Set if bit 7 of SI is set, else reset (Note: bit 7 of the R register can
only be set with a LD R,A instruction.)
Z Set if SI is zero, else reset
H Reset
P/V NMOS chip: Flag state is uncertain: If Interrupt Flip-Flop 2 (IFF,) is
reset, then the P/V flag is reset. If Interrupt Flip-Flop 2 is set, then
the P/V flag may or may not be set.
CMOS chip: State of Interrupt Flip-Flop 2 (IFF),)
N Reset
C No change
TIMING: 2 M cycles, 9 (4,5) T-states.
DESCRIPTION: The A register is loaded with the contents of the special purpose

Page 5-12

register SI. | is the interrupt vector register, and R is the memory
refresh register.

8-BIT ARITHMETIC and LOGIC

ADC Ay

BINARY: 10001pperp ifris B, C, D, E, H, L, (HL), or A
11 gl1101 10001lpprp if r is HX, LX, HY, or LY
HEX:
r | ppp | 4
B 000 88
C 001 89
D 010 8A
E 011 8B
H 100 8C
L 101 8D
(HL) | 110 8E
A 111 8F
HX 100 DD8C
LX 101 DD8D
HY 100 FD8C
LY 101 FD8D
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1s zero, else reset
H Set if carry from bit 3, else reset
P/V Set if overflow, else reset
N Reset
C Set if carry from bit 7, else reset
TIMING: I1f ris B, C, D, E, H, L, (HL), or A: 1 M cycle, 4 T-states.
If I is HX, LX, HY, or LY: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 2 M cycles, 7 (4,3) T-states.
DESCRIPTION: +« I£fTr is B, C, D, E, H, L, A, HX, LX, HY, or LY: The contents of

register I and the contents of the Carry Bit are added to the contents
of the Aregister, and the result is stored in the Aregister.

e If I is (HL): The contents of the memory location of the HL register
pair and the contents of the Carry Bit are added to the contents of
the Aregister, and the result is stored in the A register.

Page 5-13

8-BIT ARITHMETIC and LOGIC

ADC An

BINARY: 11001110 nnnnnnnn
HEX:
CE n
FLAGS: S Set if result is negative, else reset
Z Set i1f result 1is zero, else reset
H Set if carry from bit 3, else reset
P/V Set if overflow, else reset
N Reset
C Set if carry from bit 7, else reset

TIMING: 2 M cycles, 7 (4,3) T-states.

DESCRIPTION: The one-byte value N and the contents of the Carry Bit are added to the
contents of the Aregister, and the result is stored in the A register.

Page 5-14

ADC A, (ir+d)

8-BIT ARITHMETIC and LOGIC

BINARY: 11 gl1101 10001110 dddddddd
HEX:
ir q
IX DD8E d
IY 1 FD8E d
FLAGS: S Set if result is negative, else reset
Z Set if result is zero, else reset
H Set if carry from bit 3, else reset
P/V Set if overflow, else reset
N Reset
C Set if carry from bit 7, else reset

TIMING: 5 M cycles,

DESCRIPTION:

19

(4,4,3,5,3) T-states.

The contents of the memory location determined by the sum of the index
register I plus displacement.d and the contents of the Carry Bit are

added to the contents of the A register,

and the result is stored in the

A register. The displacement is a two's complement byte value in the
range of -128 to +127.

Page 5-15

8-BIT ARITHMETIC and LOGIC

ADD A

BINARY: 10000ppP if ris B, C, D, E, H, L, (HL), or A
11 gl1101 10000ppPP if r is HX, LX, HY, or LY
HEX:
r ppp ol
B 000 80
C 001 81
D 010 82
E 011 83
H 100 84
L 101 85
(HL) | 110 86
A 111 87
HX 100 DD84
LX 101 DD85
HY 100 FD84
LY 101 FD85
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1is zero, else reset
H Set if carry from bit 3, else reset
P/V Set if overflow, else reset
N Reset
C Set if carry from bit 7, else reset
TIMING: Ifr is B, C, D, E, H, L, or A: 1 M cycle, 4 T-states.
If I is HX, LX, HY, or LY: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 2 M cycles, 7 (4,3) T-states.

DESCRIPTION: =« I1£fTr is B, C, D, E, H, L, A, HX, LX, HY, or LY: The contents of
register I is added to the contents of the Aregister, and the result
is stored in the Aregister.

e If I is (HL): The contents of the memory location of the HL register
pair is added to the contents of the Aregister, and the result is
stored in the A register.

Page 5-16

ADD A,n

8-BIT ARITHMETIC and LOGIC

BINARY: 11000

110 nnnnnnmnan

HEX:

C6 n

FLAGS: S Set if

Z Set if
H Set if
P/V Set if
N Reset

C Set if

TIMING: 2 M cycles,

DESCRIPTION: The one-byte value N is added to the contents of the A register,

result

result is negative, else reset
result is zero, else reset
carry from bit 3, else reset
overflow, else reset

carry from bit 7, else reset

7 (4,3) T-states.

is stored in the A register.

and the

Page 5-17

8-BIT ARITHMETIC and LOGIC

ADD A, (ir+d)

BINARY: 11 gl1l1101 10000110 dddddddd

HEX:

ir q

IX 0 DD86 d

IY 1 FD86 d

FLAGS: S Set if result is negative, else reset
Z Set if result is zero, else reset
H Set if carry from bit 3, else reset
P/V Set if overflow, else reset
N Reset
C Set if carry from bit 7, else reset

TIMING: 5 M cycles, 19 (4,4,3,5,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register ir plus displacement d is added to the contents of the A
register, and the result is stored in the Aregister. The displacement d
is a two's complement byte value in the range of -128 to +127.

Page 5-18

8-BIT ARITHMETIC and LOGIC

AND r
BINARY: 10100pprP if ris B, C, D, E, H, L, (HL), or A
11 gl1101 10100ppP if r is HX, LX, HY, or LY
HEX:
r | ppp | 4
B 000 A0
C 001 Al
D 010 A2
E 011 A3
H 100 A4
L 101 A5
(HL) | 110 26
A 111 A7
HX 100 DDA4
LX 101 DDAS
HY 100 FDA4
LY 101 FDAS
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1s zero, else reset
H Set
P/V Set if even parity, else reset
N Reset
cC Reset
TIMING: Ifr is B, C, D, E, H, L, or A: 1 M cycle, 4 T-states.
If I is HX, LX, HY, or LY: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 2 M cycles, 7 (4,3) T-states.
DESCRIPTION: +« I1£fTr is B, C, D, E, H, L, A, if r is HX, LX, HY, or LY: The contents

of register I is ANDed with the contents of the Aregister, and the
result is stored in the Aregister.

e If I is (HL): The contents of the memory location of the HL register
pair is ANDed with the contents of the Aregister, and the result is
stored in the Aregister.

Page 5-19

8-BIT ARITHMETIC and LOGIC

AND n

BINARY: 11100110 nnnnnnnn
HEX:
E6 n
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1is zero, else reset
H Set
P/V Set if even parity, else reset
N Reset
C Reset

TIMING: 2 M cycles, 7 (4,3) T-states.

DESCRIPTION: The one-byte value N is ANDed with the contents of the Aregister, and
the result is stored in the A register.

Page 5-20

8-BIT ARITHMETIC and LOGIC

AND (ir+d)

BINARY: 11 gl1l11101 10100110 dddddddd

HEX:

ir q

IX 0 DDA6 d

IY 1 FDAG6 d

FLAGS: S Set if result is negative, else reset
Z Set if result is zero, else reset
H Set
P/V Set if even parity, else reset
N Reset
C Reset

TIMING: 5 M cycles, 19 (4,4,3,5,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register ir plus displacement d is ANDed with the contents of the A
register, and the result is stored in the Aregister. The displacement d
is a two's complement byte value in the range of -128 to +127.

Page 5-21

8-BIT ARITHMETIC and LOGIC

CP r
BINARY: 101 11ppep if ris B, C, D, E, H, L, (HL), or A
11 gl1101 10111lpprp if r is HX, LX, HY, or LY
HEX:
r ppp ol
B 000 B8
C 001 B9
D 010 BA
E 011 BB
H 100 BC
L 101 BD
(HL) | 110 BE
A 111 BF
HX 100 DDBC
LX 101 DDBD
HY 100 1 FDBC
LY 101 1 FDBD
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1is zero, else reset
H Set 1f borrow from bit 4, else reset
P/V Set overflow, else reset
N Set
C Set 1f borrow, else reset
TIMING: Ifr is B, C, D, E, H, L, or A: 1 M cycle, 4 T-states.
If I is HX, LX, HY, or LY: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 2 M cycles, 7 (4,3) T-states.

DESCRIPTION: =« 1fTr is B, C, D, E, H, L, A, HX, LX, HY, or LY: The contents of
register I is subtracted from the contents of the Aregister to affect
the flags. The contents of the Aregister is unchanged.

e If I is (HL): The contents of the memory location of the HL register
pair is subtracted from the contents of the A register to affect the
flags. The contents of the Aregister is unchanged.

Page 5-

22

CP n

8-BIT ARITHMETIC and LOGIC

BINARY: 11111

110 nnnnnnnan

HEX:

FE n

FLAGS: S Set if

Z Set if
H Set if
P/V Set if
N Set

C Set if

TIMING: 2 M cycles,

result is negative, else reset
result is zero, else reset
borrow from bit 4, else reset
overflow, else reset

borrow, else reset

7 (4,3) T-states.

DESCRIPTION: The one-byte value N is subtracted from the contents of the A register
to affect the flags. The contents of the A register is unchanged.

Page 5-23

8-BIT ARITHMETIC and LOGIC

CP (ir+d)

BINARY: 11 gl1l1101 10111110 dddddddd

HEX:

ir q

IX 0 DDBE d

IY 1 FDBE d

FLAGS: S Set if result is negative, else reset
Z Set if result is zero, else reset
H Set if borrow from bit 4, else reset
P/V Set if overflow, else reset
N Set
C Set if borrow, else reset

TIMING: 5 M cycles, 19 (4,4,3,5,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register ir plus displacement d is subtracted from the contents of the A
register to affect the flags. The contents of the Aregister is
unchanged. The displacement d is a two's complement byte value in the
range of -128 to +127.

Page 5-24

8-BIT ARITHMETIC and LOGIC

DEC r

BINARY: O0ppplO1 | ifris B, C, D, E, H, L, (HL), or A

11 gl1101 0O 0pppl0l if r is HX, LX, HY, or LY

HEX:
r | ppp | 4
B | 000 05
c | oo1 0D
D | 010 15
E | 011 1D
H | 100 25
L | 101 2D
(HL) | 110 35
A | 111 3D
HX | 100 | 0 | DD25
Lx | 101 | o | pD2D
HY | 100 | 1 || FD25
Ly | 101 | 1 | FD2D

FLAGS: S Set if result is negative, else reset
Z Set 1f result 1s zero, else reset
H Set 1f borrow from bit 4, else reset
P/V Set if I is 7FH (was 80H before instruction execution), else reset
N Set
C No change

TIMING: Ifr is B, C, D, E, H, L, or A: 1 M cycle, 4 T-states.
If I is HX, LX, HY, or LY: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 2 M cycles, 7 (4,3) T-states.

DESCRIPTION: +« I£fTr is B, C, D, E, H, L, A, HX, LX, HY, or LY: The contents of
register I is decremented by one.
e If I is (HL): The contents of the memory location of the HL register
pair is decremented by one.

Page 5-25

8-BIT ARITHMETIC and LOGIC

DEC (ir+d)

BINARY: 11 gl1l11101 00110101 dddddddd

HEX:

ir q

IX 0 DD35 d

IY 1 FD35 d

FLAGS: S Set if result is negative, else reset
Z Set if result is zero, else reset
H Set if borrow from bit 4, else reset
P/V Set 1if 0r+d) is 7FH (was 80H before instruction execution), else reset
N Set
C No change

TIMING: 5 M cycles, 19 (4,4,3,5,3) T-states.
DESCRIPTION: The contents of the memory location determined by the sum of the index

register ir plus displacement d is decremented by one. The displacement d
is a two's complement byte value in the range of -128 to +127.

Page 5-26

8-BIT ARITHMETIC and LOGIC

INC r
BINARY: 0O 0pppl00O ifris B, C, D, E, H, L, (HL), or A
11 gl1101 0O 0pppl0O0 if r is HX, LX, HY, or LY
HEX:
r ppp q
B 000 04
C 001 0]
D 010 14
E 011 1C
H 100 24
L 101 2C
(HL) | 110 34
A 111 3C
HX 100 DD24
LX 101 DD2C
HY 100 FD24
LY 101 FD2C
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1s zero, else reset
H Set if carry from bit 3, else reset
P/V Set if I is 80H (was 7FH before instruction execution), else reset
N Reset
C No change
TIMING: Ifr is B, C, D, E, H, L, or A: 1 M cycle, 4 T-states.
If I is HX, LX, HY, or LY: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 2 M cycles, 7 (4,3) T-states.
DESCRIPTION: +« I£fTr is B, C, D, E, H, L, A, HX, LX, HY, or LY: The contents of

register I is incremented by one.

e I

fr is (HL): The contents of the memory location of the HL register

pair is incremented by one.

Page 5-27

8-BIT ARITHMETIC and LOGIC

INC (ir+d)

BINARY: 11 gl1l1101 00110100 dddddddd

HEX:
ir q

IX 0 DD34 d

IY 1 FD34 d

FLAGS: S Set if result is negative, else reset
Z Set if result is zero, else reset
H Set if carry from bit 3, else reset
P/V Set 1if 0r+d) is 80H (was 7FH before instruction execution), else reset
N Reset
C No change

TIMING: 5 M cycles, 19 (4,4,3,5,3) T-states.
DESCRIPTION: The contents of the memory location determined by the sum of the index

register ir plus displacement d is incremented by one. The displacement d
is a two's complement byte value in the range of -128 to +127.

Page 5-28

8-BIT ARITHMETIC and LOGIC

OR
BINARY: 10110pprp if ris B, C, D, E, H, L, (HL), or A
11 gl1101 10110pprp if r is HX, LX, HY, or LY
HEX:
r | ppp | 4
B 000 BO
C 001 Bl
D 010 B2
E 011 B3
H 100 B4
L 101 B5
(HL) | 110 B6
A 111 B7
HX 100 DDB4
LX 101 0 DDB5
HY 100 1 FDB4
LY 101 1 FDB5
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1s zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
cC Reset
TIMING: Ifr is B, C, D, E, H, L, or A: 1 M cycle, 4 T-states.
If I is HX, LX, HY, or LY: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 2 M cycles, 7 (4,3) T-states.
DESCRIPTION: +« I£fTr is B, C, D, E, H, L, A, HX, LX, HY, or LY: The contents of

register I is inclusively ORed with the contents of the Aregister, and
the result is stored in the Aregister.

e If I is (HL): The contents of the memory location of the HL register
pair is inclusively ORed with the contents of the Aregister, and the
result is stored in the Aregister.

Page 5-29

8-BIT ARITHMETIC and LOGIC

OR n

BINARY: 11110110 nnnnnnnn
HEX:
F6 n
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
cC Reset

TIMING: 2 M cycles, 7 (4,3) T-states.

DESCRIPTION: The one-byte value N is inclusively ORed with the contents of the A
register, and the result is stored in the A register.

Page 5-30

8-BIT ARITHMETIC and LOGIC

OR (ir+d)

BINARY: 11 g11101 10110110 dddddddd

HEX:

ir q

IX 0 DDB6 d

IY 1 FDB6 d

FLAGS: S Set if result is negative, else reset
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Reset

TIMING: 5 M cycles, 19 (4,4,3,5,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register ir plus displacement d is inclusively ORed with the contents of
the Aregister, and the result is stored in the Aregister. The
displacement d is a two's complement byte value in the range of -128 to
+127.

Page 5-31

SBC A

8-BIT ARITHMETIC and LOGIC

10011lppp if ris B, C, D, E, H, L, (HL), or A

11 gl1101 10011ppp if r is HX, LX, HY, or LY

result is negative, else reset
result is zero, else reset
borrow from bit 4, else reset
overflow, else reset

borrow, else reset

is B, C, D, E, H, L, or A: 1 M cycle, 4 T-states.
If I is HX, LX, HY, or LY: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 2 M cycles, 7 (4,3) T-states.

BINARY:
HEX:
r ppp q
B 000 98
C 001 99
D 010 9A
E 011 9B
H 100 9C
L 101 9D
(HL) 110 9E
A 111 OF
HX 100 DD9C
LX 101 DD9D
HY 100 FDOC
LY 101 FDO9D
FLAGS: S Set if
Z Set if
H Set if
P/V Set if
N Set
C Set if
TIMING: Ifr
DESCRIPTION:

Page 5-

32

« If I is B, C, D, E, H, L, A, HX, LX, HY, or LY: The contents of
register I' and the contents of the Carry Bit are subtracted from the
contents of the Aregister, and the result is stored in the A register.

e If I is (HL): The contents of the memory location of the HL register
pair and the contents of the Carry Bit are subtracted from the
contents of the Aregister, and the result is stored in the A register.

SBC A)n

8-BIT ARITHMETIC and LOGIC

BINARY: 11011

110 nnnnnnnan

HEX:

DE n

FLAGS: S Set if

Z Set if
H Set if
P/V Set if
N Set

C Set if

TIMING: 2 M cycles,

result is negative, else reset
result is zero, else reset
borrow from bit 4, else reset
overflow, else reset

borrow, else reset

7 (4,3) T-states.

DESCRIPTION: The one-byte value N and the contents of the Carry Bit are subtracted

from the contents of the A register,

register.

and the result is stored in the A

Page 5-33

8-BIT ARITHMETIC and LOGIC

SBC A,(ir+d)

BINARY: 11 gl1l1101 10011110 dddddddd

HEX:

ir q

IX 0 DDOE d

IY 1 FDOE d

FLAGS: S Set if result is negative, else reset
Z Set if result is zero, else reset
H Set if borrow from bit 4, else reset
P/V Set if overflow, else reset
N Set
C Set if borrow, else reset

TIMING: 5 M cycles, 19 (4,4,3,5,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register ir plus displacement.d and the contents of the Carry Bit are
subtracted from the contents of the Aregister, and the result is stored
in the Aregister. The displacement is a two's complement byte value in
the range of -128 to +127.

Page 5-34

8-BIT ARITHMETIC and LOGIC

10010ppp if ris B, C, D, E, H, L, (HL), or A

11 gl1101 10010pprp if r is HX, LX, HY, or LY

result is negative, else reset
result is zero, else reset
borrow from bit 4, else reset
overflow, else reset

borrow, else reset

is B, C, D, E, H, L, or A: 1 M cycle, 4 T-states.
If I is HX, LX, HY, or LY: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 2 M cycles, 7 (4,3) T-states.

SUB r
BINARY:
HEX:
r | ppp | 4
B | 000 90
c | o001 91
D | 010 92
E | 011 93
H 100 94
L 101 95
(HL) | 110 96
A 111 97
HX 100 DD94
LX 101 DD95
HY 100 FD94
LY 101 FD95
FLAGS: S Set if
Z Set if
H Set if
P/V Set if
N Set
C Set if
TIMING: TIfr
DESCRIPTION:

« If I is B, C, D, E, H, L, A, HX, LX, HY, or LY: The contents of
register I is subtracted from the contents of the Aregister, and the
result is stored in the Aregister.

e If I is (HL): The contents of the memory location of the HL register
pair is subtracted from the contents of the Aregister, and the result
is stored in the Aregister.

Page 5-35

8-BIT ARITHMETIC and LOGIC

SUB n

BINARY: 11010110 nnnnnnnn
HEX:
D6 n
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1is zero, else reset
H Set i1f borrow from bit 4, else reset
P/V Set if overflow, else reset
N Set
C Set 1f borrow, else reset

TIMING: 2 M cycles, 7 (4,3) T-states.

DESCRIPTION: The one-byte value N is subtracted from the contents of the A register,
and the result is stored in the Aregister.

Page 5-36

8-BIT ARITHMETIC and LOGIC

SUB (ir+d)

BINARY: 11 gl11101 10010110 dddddddd

HEX:

ir q

IX 0 DD96 d

IY 1 FD96 d

FLAGS: S Set if result is negative, else reset
Z Set if result is zero, else reset
H Set if borrow from bit 4, else reset
P/V Set if overflow, else reset
N Set
C Set if borrow, else reset

TIMING: 5 M cycles, 19 (4,4,3,5,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register ir plus displacement d is subtracted from the contents of the A
register, and the result is stored in the Aregister. The displacement d
is a two's complement byte value in the range of -128 to +127.

Page 5-37

XOR r

8-BIT ARITHMETIC and LOGIC

BINARY: 10101ppep if ris B, C, D, E, H, L, (HL), or A
11 gl1101 10101lppp if r is HX, LX, HY, or LY
HEX:
r ppp ol
B 000 A8
C 001 A9
D 010 AA
E 011 AB
H 100 AC
L 101 AD
(HL) | 110 AE
A 111 AF
HX 100 DDAC
LX 101 DDAD
HY 100 FDAC
LY 101 FDAD
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Reset
TIMING: Ifris B, C, D, E, H, L, A: 1 M cycle, 4 T-states.
If I is (HL): 2 M cycles, 7 (4,3) T-states.
If I is HX, LX, HY, or LY: 2 M cycles, 8 (4,4) T-states.

DESCRIPTION: +« I1£fTr is B, C, D, E, H, L, A, HX, LX, HY, or LY: The contents of
register I is exclusively ORed with the contents of the Aregister, and
the result is stored in the Aregister.

e If I is (HL): The contents of the memory location of the HL register
pair is exclusively ORed with the contents of the Aregister, and the
result is stored in the Aregister.

Page 5-38

8-BIT ARITHMETIC and LOGIC

XOR n

BINARY: 11101110 nnnnnnnn
HEX:
EE n
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Reset

TIMING: 2 M cycles, 7 (4,3) T-states.

DESCRIPTION: The one-byte value N is exclusively ORed with the contents of the A
register, and the result is stored in the Aregister.

Page 5-39

8-BIT ARITHMETIC and LOGIC

XOR (ir+d)

BINARY: 11 gl1l1101 10101110 dddddddd

HEX:

ir q

IX 0 DDAE d

IY 1 FDAE d

FLAGS: S Set if result is negative, else reset
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Reset

TIMING: 5 M cycles, 19 (4,4,3,5,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register ir plus displacement d is exclusively ORed with the contents of
the Aregister, and the result is stored in the Aregister. The
displacement d is a two's complement byte value in the range of -128 to
+127.

Page 5-40

GENERAL PURPOSE and CPU CONTROL

CCF

BINARY: 00111111

HEX:

3F

FLAGS: S No change

Z No change

H Copy of carry flag before instruction execution

P/V No change

N Reset

C Complement of carry flag before instruction execution

TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: Complement carry flag. The carry flag in the F register is reversed.

Page 5-41

GENERAL PURPOSE and CPU CONTROL

SCF

BINARY: 00110111

HEX:

37

FLAGS: S No change

Z No change
H Reset

P/V No change
N Reset

C Set

TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: Set carry flag. The carry flag in the F register is set.

Page 5-42

GENERAL PURPOSE and CPU CONTROL

CPL

BINARY: 00101111

HEX:

2F

FLAGS: S No change

Z No change
H Set
P/V No change
N Set
C No change

TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: Complement. The bits in the Aregister are reversed (one’s complement) .

Page 5-43

GENERAL PURPOSE and CPU CONTROL

NEG

BINARY: 11101101 01 000100
HEX:
ED44
FLAGS: S Set if result is negative, else reset
Z Set 1f result 1is zero, else reset
H Set i1f borrow from bit 4, else reset
P/V Set if A = 80H (was 80H before instruction execution), else reset
N Set
C Set if A <> 0 before instruction execution, else reset

TIMING: 2 M cycles, 8 (4,4) T-states.

DESCRIPTION: Negate the Aregister. The contents of the Aregister is subtracted from
zero, and the result is stored in the Aregister (two’s complement).

Page 5-44

GENERAL PURPOSE and CPU CONTROL

DAA

BINARY: 00100111
HEX:
27
FLAGS: S Set if bit 7 set, else reset
7 Set if A is zero, else reset
H Set if carry from bit 3, else reset
P/V Set if even parity, else reset
N No change
C Refer to chart below

TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: Decimal adjust accumulator (A register). The contents of the Aregister
is adjusted for BCD addition and BCD subtraction. The following chart
describes the effects of a DAA instruction:

Add/Subtract|Half Carry|Carry flag|Hex value|Hex value|Value added|Carry flag
flag flag before DAA|in upper |in lower |to byte after DAA
before DAA |before DAA nibble nibble
0 0 0 0 to 9 0 to 9 00 0
0 0 0 0 to 8 A to F 06 0
0 1 0 0 to 9 0 to 3 06 0
0 0 0 A to F 0 to 9 60 1
0 0 0 9 to F A to F 66 1
0 1 0 A to F 0 to 3 66 1
0 0 1 0 to 2 0 to 9 60 1
0 0 1 0 to 2 A to F 66 1
0 1 1 0 to 3 0 to 3 66 1
1 0 0 0 to 9 0 to 9 00 0
1 1 0 0 to 8 6 to F FA 0
1 0 1 7 to F 0 to 9 A0 1
1 1 1 6 to F 6 to F 9A 1

Page 5-45

GENERAL PURPOSE and CPU CONTROL

NOP

BINARY: 0000O0O0CO0OO

HEX:

00

FLAGS: No change
TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: No Operation. Executing a NOP instruction does nothing except consume
four T-states.

Page 5-46

GENERAL PURPOSE and CPU CONTROL

HALT

BINARY: 01110110

HEX:

76

FLAGS: No change
TIMING: 1 M cycle, 4 T-states.

. . ® .
DESCRIPTION: The HALT instruction directs the Z80 to execute NOP’s until a
non-maskable interrupt or reset is received by the Z80".

Page 5-47

GENERAL PURPOSE and CPU CONTROL

DI

BINARY: 11110011

HEX:

F3

FLAGS: No change
TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: Disables the maskable interrupt by resetting both Interrupt Flip-Flop 1
(IFF;) and Interrupt Flip-Flop 2 (IFF,).

Page 5-48

GENERAL PURPOSE and CPU CONTROL

El

BINARY: 11111011

HEX:

FB

FLAGS: No change
TIMING: 1 M cycle, 4 T-states.
DESCRIPTION: Enables the maskable interrupt by setting both interrupt flip-flops (IFF;

and IFF;). Maskable interrupts will not be recognized until the
completion of the instruction following the EI instruction.

Page 5-49

GENERAL PURPOSE and CPU CONTROL

IM O

BINARY: 11101101 01000110

HEX:

ED46

FLAGS: No change
TIMING: 2 M cycles, 8 (4,4) T-states.

DESCRIPTION: Sets interrupt mode 0. When a maskable interrupt is accepted, the Z80®
executes the instruction on the data bus. This is similar to an 8080A
microprocessor; however, the Z80® only generates one interrupt
acknowledge pulse whereas the 8080A generates three interrupt
acknowledge pulses.

Page 5-50

GENERAL PURPOSE and CPU CONTROL

IM 1

BINARY: 11101101 01010110

HEX:

ED56

FLAGS: No change
TIMING: 2 M cycles, 8 (4,4) T-states.

. . ®
DESCRIPTION: Sets interrupt mode 1. When a maskable interrupt is accepted, the Z80
executes a RST 38H instruction.

Page 5-51

GENERAL PURPOSE and CPU CONTROL

IM 2

BINARY: 11101101 01011110

HEX:

ED5SE

FLAGS: No change
TIMING: 2 M cycles, 8 (4,4) T-states.
. ®
DESCRIPTION: Sets interrupt mode 2. When a maskable interrupt is accepted, the Z80
jumps to the memory location made up of the data bus and the Interrupt

Vector Register, |. The data bus forms the least significant eight bits
and the | register the most significant eight bits.

Page 5-52

ROTATE and SHIFT

RLA

BINARY: 00010111
HEX: SYMBOLIC:
17 J
cy< 7<6<5<4<3<2<1<0<
L1 |
FLAGS: S No change
Z No change
H Reset
P/V No change
N Reset
C Contents of bit 7 before instruction execution

TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: The contents of the A register is rotated one bit to the left: the

contents of bit 0 before instruction execution is moved into bit 1, the
contents of bit 1 before instruction execution is moved into bit 2, the
contents of bit 2 before instruction execution is moved into bit 3, the
contents of bit 3 before instruction execution is moved into bit 4, the
contents of bit 4 before instruction execution is moved into bit 5, the
contents of bit 5 before instruction execution is moved into bit 6, the
contents of bit 6 before instruction execution is moved into bit 7, the

contents of bit 7 before instruction execution is moved into the Carry
Bit, and the contents of the Carry Bit before instruction execution is
moved into bit O.

Page 5-53

RLCA

ROTATE and SHIFT

BINARY: 00000111
HEX: SYMBOLIC:
07 J
cy< 7<6<5<4<3<2<1<0<
L1 |
FLAGS: S No change
Z No change
H Reset
P/V No change
N Reset
C Contents of bit 7 before instruction execution

TIMING: 1 M cycle, 4 T-states.

DESCRIPTION:

Page 5-54

The contents of the A register is rotated one bit

before instruction
before instruction
before instruction
before instruction
contents of bit before instruction
contents of bit before instruction
contents of bit 6 before instruction

contents of bit
contents of bit
contents of bit
contents of bit

g W NP O

execution
execution
execution
execution
execution
execution
execution

is
is
is
is
is
is
is

to the left:

moved
moved
moved
moved
moved
moved
moved

into
into
into
into
into
into
into

the
bit 1, the
bit 2, the
bit 3, the
bit 4, the
bit 5, the
bit 6, the
bit 7, and
both

the contents of bit 7 before instruction execution is moved into

bit 0 and the Carry Bit.

ROTATE and SHIFT

RRA

BINARY: 00011111
HEX: SYMBOLIC:
r [,
77>6>5>4>3>2>l>0 TCY

FLAGS: S No change

Z No change

H Reset

P/V No change

N Reset

C Contents of bit 0 before instruction execution

TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: The contents of the A register is rotated one bit to the right: the

contents of bit 7 before instruction execution is moved into bit 6, the
contents of bit 6 before instruction execution is moved into bit 5, the
contents of bit 5 before instruction execution is moved into bit 4, the
contents of bit 4 before instruction execution is moved into bit 3, the
contents of bit 3 before instruction execution is moved into bit 2, the
contents of bit 2 before instruction execution is moved into bit 1, the
contents of bit 1 before instruction execution is moved into bit 0, the

contents of bit 0 before instruction execution is moved into the Carry
Bit, and the contents of the Carry Bit before instruction execution 1is
moved into bit 7.

Page 5-55

ROTATE and SHIFT

RRCA

BINARY: 00001111
HEX: SYMBOLIC:
= C |
S7>6>5>4>3>2>1>0 SCY
| L |
FLAGS: S No change
Z No change
H Reset
P/V No change
N Reset
C Contents of bit 0 before instruction execution

TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: The contents of the A register is rotated one bit to the right: the

contents of bit 7 before instruction execution is moved into bit 6, the
contents of bit 6 before instruction execution is moved into bit 5, the
contents of bit 5 before instruction execution is moved into bit 4, the
contents of bit 4 before instruction execution is moved into bit 3, the
contents of bit 3 before instruction execution is moved into bit 2, the
contents of bit 2 before instruction execution is moved into bit 1, the
contents of bit 1 before instruction execution is moved into bit 0, the
contents of bit 0 before instruction execution is moved into both bit 7
and the Carry Bit

Page 5-56

RL r

ROTATE and SHIFT

BINARY: 11001011|00010pppP
HEX: SYMBOLIC:
r Ppp __J
B 000 | CB1O cY< 7<6<5<4<3<2<1<0<
L1 |
C 001 CB11
D 010 CB12
E 011 CB13
H 100 CB14
L 101 CB15
(HL) 110 CB16
A 111 CB17
FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution
TIMING: If is B, C, D, E, H, L, or A: 2 M cycles, 8 (4,4) T-states.
If [is (HL): 4 M cycles, 15 (4,5,3,3) T-states.
DESCRIPTION: =« 1f T is B, C, D, E, H, L, or A: The contents of register I is rotated

one bit to the left: the contents of bit 0 before instruction execution is
moved into bit 1, the contents of bit 1 before instruction execution is moved
into bit 2, the contents of bit 2 before instruction execution is moved into
bit 3, the contents of bit 3 before instruction execution is moved into bit 4,
the contents of bit 4 before instruction execution is moved into bit 5, the
contents of bit 5 before instruction execution is moved into bit 6, the
contents of bit 6 before instruction execution is moved into bit 7, the
contents of bit 7 before instruction execution is moved into the Carry Bit,
and the contents of the Carry Bit before instruction execution is moved into
bit 0.
e« If I is (HL): The contents of the memory location of the HL register pair is
rotated one bit to the left: the contents of bit 0 before instruction
, the contents of bit
, the contents of bit
, the contents of bit
, the contents of bit
, the contents of bit
, the contents of bit
, the contents of bit 7 before instruction

execution is moved into bit before instruction

execution is moved into bit before instruction
execution is moved into bit before instruction
execution is moved into bit before instruction

execution is moved into bit before instruction

o U W N

execution is moved into bit before instruction

~N o 0w DN

execution is moved into bit
execution is moved into the Carry Bit, and the contents of the Carry Bit
before instruction execution is moved into bit 0.

Page 5-57

ROTATE and SHIFT

RL (ir+d)

BINARY: 119g11101|11001011)|dddddddd | 00010110
HEX: SYMBOLIC:
ir g __J
1x| o [ppce 4 16 cy< 7<6<5<4<3<2<1<0<
0]

IY| 1 FDCB d 16

FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution

TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register II' plus the displacement d is rotated one bit to the left: the

contents of bit 0 before instruction execution is moved into bit 1, the
contents of bit 1 before instruction execution is moved into bit 2, the
contents of bit 2 before instruction execution is moved into bit 3, the
contents of bit 3 before instruction execution is moved into bit 4, the
contents of bit 4 before instruction execution is moved into bit 5, the
contents of bit 5 before instruction execution is moved into bit 6, the
contents of bit 6 before instruction execution is moved into bit 7, the

contents of bit 7 before instruction execution is moved into the Carry
Bit, and the contents of the Carry Bit before instruction execution 1is
moved into bit 0. The displacement d is a two's complement byte value in
the range of -128 to +127.

Page 5-58

RL

r,(ir+d)

ROTATE and SHIFT

BINARY: 11 gl11101 11001011 dddddddd 0001 0ppeP
HEX: SYMBOLIC:
ir g
o |
IX DDCB d 00010ppp cY< 7<6<5<4<3<2<1<0¢
Iy| 1 FDCB d 00010ppp
PpPP 000 001 010 011 100 101 111
r B C D E H L A
FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution

TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register I plus the displacement d is rotated one bit to the left: the
contents of bit 0 before instruction execution is moved into bit 1, the
contents of bit 1 before instruction execution is moved into bit 2, the
contents of bit 2 before instruction execution is moved into bit 3, the
contents of bit 3 before instruction execution is moved into bit 4, the
contents of bit 4 before instruction execution is moved into bit 5, the
contents of bit 5 before instruction execution is moved into bit 6, the
contents of bit 6 before instruction execution is moved into bit 7, the
contents of bit 7 before instruction execution is moved into the Carry
Bit, and the contents of the Carry Bit before instruction execution is

moved into bit 0;

and register I is loaded with the contents of the

memory location determined by the sum of the index register ir plus the
displacement d. The displacement d is a two's complement byte value in
the range of -128 to +127.

Page 5-59

RLC

[

ROTATE and SHIFT

BINARY: 11001011/ 00000ppTP
HEX: SYMBOLIC:
r ppp __J
B 000 | CBOO cY< 7<6<5<4<3<2<1<0<
L1]
C 001 CBO1
D 010 CBO0O2
E 011 CBO3
H 100 CBO4
L 101 CBO5
(HL) 110 CBO6
A 111 CBO7
FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution
TIMING: If is B, C, D, E, H, L, or A: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 4 M cycles, 15 (4,5,3,3) T-states.
DESCRIPTION: =« 1f T is B, C, D, E, H, L, or A: The contents of register I is rotated

Page 5-

one bit to the left: the contents of bit 0 before instruction execution is
moved into bit 1,
into bit 2,
bit 3,

the contents of bit 4 before instruction execution is moved into bit 5,

the contents of bit 1 before instruction execution is moved
into
bit 4,

the

the contents of bit 2 before instruction execution is moved
the contents of bit 3 before instruction execution is moved into

contents of bit 5 before instruction execution is moved into
contents of bit 6 before instruction execution is moved into
contents of bit 7 before instruction execution is moved into

bit 6, the
bit 7, and
both bit 0

the
and

60

the Carry Bit.

e If I is (HL): The contents of the memory location of the HL register pair is

rotated one bit to the left: the contents of bit 0 before instruction
execution is moved into bit 1, the contents of bit 1 before instruction
execution is moved into bit 2, the contents of bit 2 before instruction
execution is moved into bit 3, the contents of bit 3 before instruction
execution is moved into bit 4, the contents of bit 4 before instruction
execution is moved into bit 5, the contents of bit 5 before instruction
execution is moved into bit 6, the contents of bit 6 before instruction
execution is moved into bit 7, and the contents of bit 7 before instruction
execution is moved into both bit 0 and the Carry Bit.

RLC (ir+d)

ROTATE and SHIFT

BINARY: 11 gl11101 11001011 dddddddd 00000110
HEX: SYMBOLIC:
ir g
IX DDCB d 06 oyl 7<6<5<4<3<2<1<OLJ
L1 |
IY| 1 FDCB d 06
FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution

TIMING: 6 M cycles, (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register ir plus the displacement d is rotated one bit to the left: the
contents of bit 0 before instruction execution is moved into bit 1, the
contents of bit 1 before instruction execution is moved into bit 2, the
contents of bit 2 before instruction execution is moved into bit 3, the
contents of bit 3 before instruction execution is moved into bit 4, the
contents of bit 4 before instruction execution is moved into bit 5, the
contents of bit 5 before instruction execution is moved into bit 6, the
contents of bit 6 before instruction execution is moved into bit 7, and
the contents of bit 7 before instruction execution is moved into both

bit 0 and the Carry Bit. The displacement d is a two's complement byte
value in the range of -128 to +127.

Page 5-61

RLC

r,(ir+d)

ROTATE and SHIFT

BINARY: 11 g11101 11001011 dddddddd 00000pPPP
HEX: SYMBOLIC:
ir g
B |
IX DDCB d 00000ppp CY< 7<6<5<4<3<2<l<OT
Iy| 1 FDCB d 00000ppp
PpPP 000 001 010 011 100 101 111
r B C D E H L A
FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution

TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register I plus the displacement d is rotated one bit to the left: the
contents of bit 0 before instruction execution is moved into bit 1, the
contents of bit 1 before instruction execution is moved into bit 2, the
contents of bit 2 before instruction execution is moved into bit 3, the
contents of bit 3 before instruction execution is moved into bit 4, the
contents of bit 4 before instruction execution is moved into bit 5, the
contents of bit 5 before instruction execution is moved into bit 6, the
contents of bit 6 before instruction execution is moved into bit 7, and
the contents of bit 7 before instruction execution is moved into both

Page 5-62

bit 0 and the Carry Bit;

and register I is loaded with the contents of
the memory location determined by the sum of the index register ir plus
the displacement d. The displacement d is a two's complement byte value
in the range of -128 to +127.

ROTATE and SHIFT

RR r

BINARY: 11001011|00011ppp
HEX: SYMBOLIC:
r Ppp L
B 000 | cB1s %7>6>5>4>3>2>1>O %CY
C 001 CB19
D 010 CB1A
E 011 CB1B
H 100 CB1C
L 101 CB1D
(HL) 110 CB1E
A 111 CB1F
FLAGS: S Contents of the carry flag before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 0 before instruction execution

TIMING: ifr is B, C, D, E, H, L, or A: 2 M cycles, 8 (4,4) T-states.
If [is (HL): 4 M cycles, 15 (4,5,3,3) T-states.

DESCRIPTION: =« 1f T is B, C, D, E, H, L, or A: The contents of register I is rotated
one bit to the right: the contents of bit 7 before instruction execution is
moved into bit 6, the contents of bit 6 before instruction execution is moved
into bit 5, the contents of bit 5 before instruction execution is moved into
bit 4, the contents of bit 4 before instruction execution is moved into bit 3,
the contents of bit 3 before instruction execution is moved into bit 2, the
contents of bit 2 before instruction execution is moved into bit 1, the
contents of bit 1 before instruction execution is moved into bit 0, the
contents of bit 0 before instruction execution is moved into the Carry Bit,
and the contents of the Carry Bit before instruction execution is moved into
bit 7.

e If I is (HL): The contents of the memory location of the HL register pair is
rotated one bit to the right: the contents of bit 7 before instruction

the contents of bit

the contents of bit

the contents of bit

, the contents of bit

, the contents of bit

, the contents of bit

, the contents of bit 0 before instruction

execution is moved into bit before instruction

~

execution is moved into bit before instruction

~

execution is moved into bit before instruction

~

execution is moved into bit before instruction

execution is moved into bit before instruction

PN W s 0o

execution is moved into bit before instruction

O R N W s> 0o

execution is moved into bit
execution is moved into the Carry Bit, and the contents of the Carry Bit
before instruction execution is moved into bit 7.

Page 5-63

ROTATE and SHIFT

RR (ir+d)

BINARY: 11 gl11101 11001011 dddddddd 00011110
HEX: SYMBOLIC:
= L =
IX| O DDCB d 1E $7>6>5>4>3>2>l>0 >CY
| L |

IY| 1 FDCB d 1E

FLAGS: S Contents of the carry flag before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 0 before instruction execution

TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register II' plus the displacement d is rotated one bit to the right: the

contents of bit 7 before instruction execution is moved into bit 6, the
contents of bit 6 before instruction execution is moved into bit 5, the
contents of bit 5 before instruction execution is moved into bit 4, the
contents of bit 4 before instruction execution is moved into bit 3, the
contents of bit 3 before instruction execution is moved into bit 2, the
contents of bit 2 before instruction execution is moved into bit 1, the
contents of bit 1 before instruction execution is moved into bit 0, the

contents of bit 0 before instruction execution is moved into the Carry
Bit, and the contents of the Carry Bit before instruction execution 1is
moved into bit 7. The displacement d is a two's complement byte value in
the range of -128 to +127.

Page 5-64

RR

r,(ir+d)

ROTATE and SHIFT

BINARY:

11

g11101

11001011

dddddddd

0001 1lpprp

HEX:

ir

IX

DDCB d 0001lppp

IY| 1

FDCB d 0001lppp

SYMBOLIC:

|~%7>6>5>4>3>2>1>O

ppp

000

001 010

011

100

101 111

FLAGS: S
Z
H

P/V

N
C

TIMING:

6 M cycles,

DESCRIPTION:

Contents of the carry flag before instruction execution

Set if result is zero,

Reset

Set if even parity,

Reset

else

else reset

reset

Contents of bit 0 before instruction execution

23

The contents
register
contents
contents
contents
contents
contents
contents
contents
contents
Bit, and

of
of
of
of
of
of
of
of

of

ir plus

bit
bit
bit
bit
bit
bit
bit
bit

the memory location determined by
the displacement d is rotated one

N W 0oy 3

0

moved into bit 7;

(4,4,3,5,4,3)

before
before
before
before
before
before
before
before

the contents of

T-states.

instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction

execution
execution
execution
execution
execution
execution
execution
execution

is
is
is
is
is
is
is
is

the sum of

moved
moved
moved
moved
moved
moved
moved
moved

bit to the

into
into
into
into
into
into
into
into

the index

right: the
bit 6, the
bit 5, the
bit 4, the
bit 3, the
bit 2, the
bit 1, the
bit 0, the
the Carry

the Carry Bit before instruction execution is
and register I is loaded with the contents of the

memory location determined by the sum of the index register ir plus the
displacement d. The displacement d is a two's complement byte value in
the range of -128 to +127.

Page 5-65

RRC r

ROTATE and SHIFT

BINARY: 11001011/ 00001ppp
HEX: SYMBOLIC:
r ppp L
B 000 | cBOS 57>6>5>4>3>2>1>0 SCY
| L |
C 001 CBO9
D 010 CBOA
E 011 CBOB
H 100 CBOC
L 101 CBOD
(HL) 110 CBOE
A 111 CBOF
FLAGS: S Contents of bit 0 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 0 before instruction execution
TIMING: ifr is B, C, D, E, H, L, or A: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 4 M cycles, 15 (4,5,3,3) T-states.

DESCRIPTION: -

Page 5-66

ifr is B, C, D, E, H, L,
one bit to the right:
moved into bit 6,
into bit 5,
bit 4, the contents of bit 4 before instruction execution is
the contents of bit 3 before instruction execution is moved
contents of bit 2 before instruction execution is moved into
contents of bit 1 before instruction execution is moved into
contents of bit 0 before instruction execution is moved into
the Carry Bit.

e If I is (HL): The contents of the memory location of the HL

the contents of bit 6 before instruction execution is
the contents of bit 5 before instruction execution is moved

moved into
into bit 2,
bit 1, the
bit 0, the
both bit 7

or A: The contents of register I is rotated
the contents of bit 7 before instruction execution is

moved
into
bit 3,
the

and

register pair is

rotated one bit to the right: the contents of bit 7 before instruction
execution is moved into bit 6, the contents of bit 6 before instruction
execution is moved into bit 5, the contents of bit 5 before instruction
execution is moved into bit 4, the contents of bit 4 before instruction
execution is moved into bit 3, the contents of bit 3 before instruction
execution is moved into bit 2, the contents of bit 2 before instruction
execution is moved into bit 1, the contents of bit 1 before instruction
execution is moved into bit 0, the contents of bit 0 before instruction
execution is moved into both bit 7 and the Carry Bit.

RRC (ir+d)

ROTATE and SHIFT

BINARY: 11 gl11101 11001011 dddddddd 00001110
HEX: SYMBOLIC:
ir g
[|
IX DDCB d OE T7>6>5>4>3>2>l>0 TCY
IY| 1 FDCB d OE
FLAGS: S Contents of bit 0 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 0 before instruction execution

TIMING: 6 M cycles, (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register II' plus the displacement d is rotated one bit to the right: the
contents of bit 7 before instruction execution is moved into bit 6, the
contents of bit 6 before instruction execution is moved into bit 5, the
contents of bit 5 before instruction execution is moved into bit 4, the
contents of bit 4 before instruction execution is moved into bit 3, the
contents of bit 3 before instruction execution is moved into bit 2, the
contents of bit 2 before instruction execution is moved into bit 1, the
contents of bit 1 before instruction execution is moved into bit 0, the
contents of bit 0 before instruction execution is moved into both bit 7

and the Carry Bit.

The displacement d is a two's complement byte value
in the range of -128 to +127.

Page 5-67

ROTATE and SHIFT

RRC r,(ir+d)

BINARY: 11 gl1l1101 11001011 dddddddd 0 0001lpprp
HEX: SYMBOLIC:
ir g
| -
IX| 0 | DDCB d 00001ppp >7>6>5>4>3>2>1>0 >CY

Iy| 1 FDCB d 00001lppp

pprp 000 001 010 011 100 101 111

r B C D E H L A
FLAGS: S Contents of bit 0 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 0 before instruction execution

TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by
register I' plus the displacement d is rotated one

before instruction execution
before instruction execution
before instruction execution
before instruction execution
before instruction execution
before instruction execution
before instruction execution
before instruction execution

contents of bit
contents of bit
contents of bit
contents of bit
contents of bit
contents of bit
contents of bit
contents of bit

O RPN WD oy I

is
is
is
is
is
is
is
is

the sum of

moved
moved
moved
moved
moved
moved
moved
moved

bit to the

into
into
into
into
into
into
into
into

the index

right: the
bit 6, the
bit 5, the
bit 4, the
bit 3, the
bit 2, the
bit 1, the
bit 0, the
both bit 7

and the Carry Bit; and register I is loaded with the contents of the
memory location determined by the sum of the index register I plus the
displacement d. The displacement d is a two's complement byte value in

the range of -128 to +127.

Page 5-68

ROTATE and SHIFT

SLA r

BINARY: 11001011 001 00ppP
HEX: SYMBOLIC:
r ppp
B 000 | cB20 Cyi— 7<6<5<4<3<2<1<0<—0
L1 |
C 001 CB21
D 010 CB22
E 011 CB23
H 100 CB24
L 101 CB25
(HL) 110 CB26
A 111 CB27
FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution

TIMING: ifr is B, C, D, E, H, L, or A: 2 M cycles, 8 (4,4) T-states.
If [is (HL): 4 M cycles, 15 (4,5,3,3) T-states.

DESCRIPTION: =« 1f I is B, C, D, E, H, L, or A: The contents of register I is rotated
one bit to the left: bit zero is reset, the contents of bit 0 before

the contents of bit 1 before

the contents of bit

the contents of bit

instruction execution is moved into bit 1,
2, 2
3, 3
instruction execution is moved into bit 4, the contents of bit 4 before
5, 5
6, 6
7,

instruction execution is moved into bit before
instruction execution is moved into bit before
the contents of bit
the contents of bit before

and the contents of bit 7 before

instruction execution is moved into the Carry Bit.

instruction execution is moved into bit before
instruction execution is moved into bit

instruction execution is moved into bit

e« If I is (HL): The contents of the memory location of the HL register pair is
rotated one bit to the left: bit zero is reset, the contents of bit 0 before

instruction execution is moved into bit 1, the contents of bit 1 before
instruction execution is moved into bit 2, the contents of bit 2 before
instruction execution is moved into bit 3, the contents of bit 3 before
instruction execution is moved into bit 4, the contents of bit 4 before
instruction execution is moved into bit 5, the contents of bit 5 before
instruction execution is moved into bit 6, the contents of bit 6 before
instruction execution is moved into bit 7, and the contents of bit 7 before

instruction execution is moved into the Carry Bit.

Page 5-69

ROTATE and SHIFT

SLA (ir+d)

BINARY: 11 gl11101 11001011 dddddddd 00100110
HEX: SYMBOLIC:
ir g
1x| o [ppce 4 26 CYi—| 7<6<5<4<3<2<1<0<—0
L1 |
IY| 1 FDCB d 26
FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution

TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register ir plus the displacement d is rotated one bit to the left: bit
zero 1s reset, the contents of bit 0 before instruction execution is
moved into bit the contents of bit 1 before instruction execution is
moved into bit the contents of bit

ll

2, before instruction execution is
moved into bit 3, the contents of bit

4’

5’

6’

before instruction execution is
moved into bit the contents of bit before instruction execution is
moved into bit the contents of bit
moved into bit the contents of bit before instruction execution is
moved into bit 7, and the contents of bit 7 before instruction execution
is moved into the Carry Bit. The displacement d is a two's complement

byte value in the range of -128 to +127.

before instruction execution is

oy U1 b W N

Page 5-70

SLA

r,(ir+d)

ROTATE and SHIFT

BINARY: 11 gl1l1101 11001011 dddddddd 001 00pprP
HEX: SYMBOLIC:
ir g
]
IX DDCB d 00100ppp CY <] 7<6<5<4<3<2<1<0<—0
Iy| 1 FDCB d 00100ppp
PpPP 000 001 010 011 100 101 111
r B C E H L A
FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution
TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.
DESCRIPTION: The contents of the memory location determined by the sum of the index

register ir plus the displacement d is rotated one bit to the left: bit
bit 0 before instruction execution is

zero 1s reset,

moved
moved
moved
moved
moved
moved
moved

is moved into the

into
into
into
into
into
into
into

bit
bit
bit
bit
bit
bit
bit

the contents of

1
2
3
4
5
6

9

4
4
4
4
4
4

4

the
the
the
the
the
the
and
Car

contents
contents
contents
contents
contents
contents

the contents of

ry Bit;

of
of
of
of
of
of

bit 1 before instruction
bit 2 before instruction
bit 3 before instruction
bit 4 before instruction
bit 5 before instruction
bit 6 before instruction

execution
execution
execution
execution
execution
execution

is
is
is
is
is
is

bit 7 before instruction execution
and register I is loaded with the contents
of the memory location determined by the sum of the index register If

plus the displacement d. The displacement d is a two's complement byte
value in the range of -128 to +127.

Page 5-71

ROTATE and SHIFT

SLL r

BINARY: 11001011 0011 0ppep
HEX: SYMBOLIC:
r ppp
B 000 | cB30 Cyi—| 7<6<5<4<3<2<1<04—1
L1 |
C 001 CB31
D 010 CB32
E 011 CB33
H 100 CB34
L 101 CB35
(HL) 110 CB36
A 111 CB37
FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution

TIMING: ifr is B, C, D, E, H, L, or A: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 4 M cycles, 15 (4,5,3,3) T-states.

DESCRIPTION: =« 1f T is B, C, D, E, H, L, or A: The contents of register I is rotated
one bit to the left: bit zero is set, the contents of bit 0 before instruction
execution is moved into bit 1, the contents of bit 1 before instruction

the contents of bit

the contents of bit

2, 2 before instruction
3, 3

execution is moved into bit 4, the contents of bit 4 before instruction
5, 5
6, 6
7,

execution is moved into bit
execution is moved into bit before instruction
the contents of bit
the contents of bit
and the contents of bit 7 before instruction

execution is moved into bit before instruction

execution is moved into bit before instruction
execution is moved into bit
execution is moved into the Carry Bit.

e« If I is (HL): The contents of the memory location of the HL register pair is

rotated one bit to the left: bit zero is set, the contents of bit 0 before

instruction execution is moved into bit 1, the contents of bit 1 before
instruction execution is moved into bit 2, the contents of bit 2 before
instruction execution is moved into bit 3, the contents of bit 3 before
instruction execution is moved into bit 4, the contents of bit 4 before
instruction execution is moved into bit 5, the contents of bit 5 before
instruction execution is moved into bit 6, the contents of bit 6 before
instruction execution is moved into bit 7, and the contents of bit 7 before

instruction execution is moved into the Carry Bit.

Page 5-72

ROTATE and SHIFT

SLL (ir+d)

BINARY: 11 gl11101 11001011 dddddddd 00110110
HEX: SYMBOLIC:
ir g
1x| o [ppce 4 36 cYi—| 7<6<5<4<3<2<1<04—1
L1 |
IY| 1 FDCB d 36
FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution

TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register II' plus the displacement d is rotated one bit to the left: bit
zero 1s set, the contents of bit 0 before instruction execution is moved

into bit 1, the contents of bit 1 before instruction execution is moved
into bit 2, the contents of bit 2 before instruction execution is moved
into bit 3, the contents of bit 3 before instruction execution is moved
into bit 4, the contents of bit 4 before instruction execution is moved
into bit 5, the contents of bit 5 before instruction execution is moved
into bit 6, the contents of bit 6 before instruction execution is moved

into bit 7, and the contents of bit 7 before instruction execution is
moved into the Carry Bit. The displacement d is a two's complement byte
value in the range of -128 to +127.

Page 5-73

ROTATE and SHIFT

SLL r,(ir+d)

BINARY: 11 gl11101 11001011 dddddddd 0 0110ppp
HEX: SYMBOLIC:
ir g
1
IX| 0 || DDCB d 00110ppp CY<——— 7<6<5<4<3<2<1<0s—1

Iy| 1 FDCB d 00110ppp

pprp 000 001 010 011 100 101 111

r B C D E H L A
FLAGS: S Contents of bit 6 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 7 before instruction execution

TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register II' plus the displacement d is rotated one bit to the left: bit
zero 1s set, the contents of bit 0 before instruction execution is moved

into bit 1, the contents of bit before instruction execution is moved
into bit 2, the contents of bit before instruction execution is moved
into bit 3, the contents of bit before instruction execution is moved

before instruction execution is moved
into bit 5, the contents of bit before instruction execution is moved
into bit 6, the contents of bit before instruction execution is moved
into bit 7, and the contents of bit 7 before instruction execution is
moved into the Carry Bit; and register I is loaded with the contents of
the memory location determined by the sum of the index register ir plus
the displacement d. The displacement d is a two's complement byte value

in the range of -128 to +127.

o U1 W N

2
3
into bit 4, the contents of bit
5
6

Page 5-74

ROTATE and SHIFT

SRA r

BINARY: 11001011 001 01ppep
HEX: SYMBOLIC:
r ppp
B 000 CB28 7>6>5>4>3>2>l>0-—————%CY
C 001 CB29
D 010 CB2A
E 011 CB2B
H 100 CB2C
L 101 CB2D
(HL) 110 CB2E
A 111 CB2F
FLAGS: S Contents of bit 7 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 0 before instruction execution

TIMING: ifr is B, C, D, E, H, L, or A: 2 M cycles, 8 (4,4) T-states.
If [is (HL): 4 M cycles, 15 (4,5,3,3) T-states.

DESCRIPTION: =« 1f T is B, C, D, E, H, L, or A: The contents of register I is rotated
one bit to the right: the contents of bit 7 is copied into bit 6, the contents
of bit 6 before instruction execution is moved into bit 5, the contents of bit
5 before instruction execution is moved into bit 4, the contents of bit 4
before instruction execution is moved into bit 3, the contents of bit 3 before
instruction execution is moved into bit 2, the contents of bit 2 before
instruction execution is moved into bit 1, the contents of bit 1 before
instruction execution is moved into bit 0, and the contents of bit 0 before
instruction execution is moved into the Carry Bit.

e« If I is (HL): The contents of the memory location of the HL register pair is
rotated one bit to the right: the contents of bit 7 is copied into bit 6, the

contents of bit 6 before instruction execution is moved into bit 5, the
contents of bit 5 before instruction execution is moved into bit 4, the
contents of bit 4 before instruction execution is moved into bit 3, the
contents of bit 3 before instruction execution is moved into bit 2, the
contents of bit 2 before instruction execution is moved into bit 1, the
contents of bit 1 before instruction execution is moved into bit 0, and the
contents of bit 0 before instruction execution is moved into the Carry Bit.

Page 5-75

SRA (ir+d)

ROTATE and SHIFT

BINARY: 11 gl11101 11001011 dddddddd 00101110
HEX: SYMBOLIC:
ir g
IX| O DDCB d 2E 7>6>5>4>3>2>1>0 ——>CY
L

IY| 1 FDCB d 2E

FLAGS: S Contents of bit 7 before instruction execution
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 0 before instruction execution

TIMING:

6 M cycles, 23 (4,4,3,5,4,3)

T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register II' plus the displacement d is rotated one bit to the right: the
bit 7 is copied into bit 6,

contents of
instruction
instruction
instruction
instruction
instruction
instruction

before instruction execution is moved into

+127.

Page 5-76

execution
execution
execution
execution
execution
execution

is
is
is
is
is
is

moved
moved
moved
moved
moved
moved

into
into
into
into
into
into

bit
bit
bit
bit
bit
bit

the contents of

5
4
3
2
1

(@]

4
14
14
14
14

4

the
the
the
the
the
and
the

contents
contents
contents
contents
contents

bit 6 before

of
of
of
of
of

bit
bit
bit
bit
bit

the contents of
Carry Bit.
displacement d is a two's complement byte value in the range of -128 to

The

5 before
4 before
3 before
2 before
1 before
bit 0

SRA r,(ir+d)

ROTATE and SHIFT

001 01lpprp

BINARY: 11 gl11101 11001011 dddddddd
HEX: SYMBOLIC:
ir g
IX DDCB d 00101ppp 7>6>5>4>3>2>1>0 —%CY
Iy| 1 FDCB d 00101lppp
PpPP 000 001 010 011 100 101 111
r B C D E H L A
FLAGS: S Reset
Z Set if result is zero, else reset
H Reset
P/V Set if even parity, else reset
N Reset
C Contents of bit 0 before instruction execution

TIMING: 6 M cycles, 23 (4,4,3,5,4,3)

DESCRIPTION:

T-states.

The contents of the memory location determined by the sum of the index

register ir plus the displacement d is rotated one bit to the right: the
bit 6 before

contents of
instruction
instruction
instruction
instruction
instruction
instruction

bit 7 is copied into bit 6,

execution
execution
execution
execution
execution
execution

is
is
is
is
is
is

moved into bit 5,
moved into bit 4,
moved into bit 3,
moved into bit 2,
moved into bit 1,
moved into bit

(@]

4

before instruction execution is moved into
is loaded with the contents of the memory location determined by the sum
of the index register II' plus the displacement d.

the
the
the
the
the
and
the

the contents of

contents
contents
contents
contents
contents

of bit
of bit
of bit
of bit
of bit

the contents of

Carry Bit;

5 before
4 before
3 before
2 before
1 before
bit 0

and register [

Page 5-77

ROTATE and SHIFT

SRL r

BINARY: 11001011 |00111ppp
HEX: SYMBOLIC:
r ppp
B 000 | cB3s 0—37>65>554535>25>1>0 ——>Cy
| L
c 001 | cB39
D 010 | cB3a
E 011 | cB3B
H 100 | cB3c
L 101 | cB3D
(HL) 110 | cB3E
A 111 || cB3F

FLAGS: S Reset

Z Set if result is zero, else reset

H Reset

P/V Set if even parity, else reset

N Reset

C Contents of bit 0 before instruction execution

TIMING: ifr is B, C, D, E, H, L, or A: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 4 M cycles, 15 (4,5,3,3) T-states.

DESCRIPTION: =« 1f T is B, C, D, E, H, L, or A: The contents of register I is rotated
one bit to the right: bit 7 is reset, the contents of bit 7 before instruction
execution is moved into bit 6, the contents of bit 6 before instruction

, the contents of bit

, the contents of bit

, the contents of bit

, the contents of bit

, the contents of bit

, and the contents of bit 0 before instruction

execution is moved into bit before instruction

execution is moved into bit before instruction
execution is moved into bit before instruction

execution is moved into bit before instruction

N W s O,

execution is moved into bit before instruction

O P N W s> U1 o

execution is moved into bit
execution is moved into the Carry Bit.

e« If I is (HL): The contents of the memory location of the HL register pair is
rotated one bit to the right: bit 7 is reset, the contents of bit 7 before
instruction execution is moved into bit 6, the contents of bit 6 before

instruction execution is moved into bit 5, the contents of bit 5 before
instruction execution is moved into bit 4, the contents of bit 4 before
instruction execution is moved into bit 3, the contents of bit 3 before
instruction execution is moved into bit 2, the contents of bit 2 before
instruction execution is moved into bit 1, the contents of bit 1 before
instruction execution is moved into bit 0, and the contents of bit 0 before

instruction execution is moved into the Carry Bit.

Page 5-78

ROTATE and SHIFT

SRL (ir+d)

BINARY: 11911101]11001011|dddddddd | 00111110
HEX: SYMBOLIC:

ir g

x| o | ppoce 4 3E O—%7>6>5>4>3>2>1>O —%CY

IY| 1 FDCB d 3E

FLAGS: S Reset

Z Set if result is zero, else reset

H Reset

P/V Set if even parity, else reset

N Reset

C Contents of bit 0 before instruction execution

TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register II' plus the displacement d is rotated one bit to the right: bit

7 is reset, the contents of bit 7 before instruction execution is moved
into bit 6, the contents of bit 6 before instruction execution is moved
into bit 5, the contents of bit 5 before instruction execution is moved
into bit 4, the contents of bit 4 before instruction execution is moved
into bit 3, the contents of bit 3 before instruction execution is moved
into bit 2, the contents of bit 2 before instruction execution is moved
into bit 1, the contents of bit 1 before instruction execution is moved
into bit 0, and the contents of bit 0 before instruction execution is

moved into the Carry Bit. The displacement d is a two's complement byte
value in the range of -128 to +127.

Page 5-79

ROTATE and SHIFT

SRL r,(ir+d)

BINARY: 11 gl1l11101 11001011 dddddddd 0 0111lppep
HEX: SYMBOLIC:
ir g
I
IX| 0 | DDCB d 00111lppp 0—>7>6>5>4>3>2>1>0 |———>CY

Iy| 1 FDCB d 0011llppp

FLAGS: S Reset

Z Set if result is zero, else reset

H Reset

P/V Set if even parity, else reset

N Reset

C Contents of bit 0 before instruction execution

TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: The contents of the memory location determined by the sum of the index
register I plus the displacement d is rotated one bit to the right: bit

7 is reset, the contents of bit 7 before instruction execution is moved
into bit 6, the contents of bit 6 before instruction execution is moved
into bit 5, the contents of bit 5 before instruction execution is moved
into bit 4, the contents of bit 4 before instruction execution is moved
into bit 3, the contents of bit 3 before instruction execution is moved
into bit 2, the contents of bit 2 before instruction execution is moved
into bit 1, the contents of bit 1 before instruction execution is moved
into bit 0, and the contents of bit 0 before instruction execution is

moved into the Carry Bit; and register I is loaded with the contents of
the memory location determined by the sum of the index register II' plus
the displacement

Page 5-80

RLD

BINARY:

HEX:

ROTATE and SHIFT

11101101 01101111

ED6F

FLAGS:

TIMING:

DESCRIPTION:

SYMBOLIC:

A7 6543210 765 4[32 1 0| (HL)

Set if bit 7 in A is set, else reset
Set if A is zero, else reset

Reset

Set if even parity, else reset

Reset

No change

5 M cycles, 18 (4,4,3,4,3) T-states.

The contents of nibbles (four bits) are rotated one nibble to the left:
the contents of the lower nibble (bits 0-3) of the HL memory location
before instruction execution are copied to the high nibble (bits 4-7) of
the same memory location, the contents of the higher nibble (bits 4-7)
of the HL memory location before instruction execution are copied to the
lower nibble (bits 0-3) of the A register, and the contents of the lower
nibble (bits 0-3) of the A register before instruction execution are
copied to the lower nibble (bits 0-3) of the HL memory location.

Page 5-81

RRD

ROTATE and SHIFT

BINARY: 11101101 01100111

HEX:

ED67

FLAGS: S
Z
H
P/V
N
C

SYMBOLIC:

A7 6543210 765 4[32 1 0| (HL)

Set if bit 7 in A is set, else reset
Set if A is zero, else reset

Reset

Set if even parity, else reset

Reset

No change

TIMING: 5 M cycles, 18 (4,4,3,4,3) T-states.

DESCRIPTION:

Page 5-82

The contents of nibbles (four bits) are rotated one nibble to the right:
the contents of the lower nibble (bits 0-3) of the A register before
instruction execution are copied to the high nibble (bits 4-7) of the HL
memory location, the contents of the higher nibble (bits 4-7) of the HL
memory location before instruction execution are copied to the lower
nibble (bits 0-3) of the same memory location, and the contents of the
lower nibble (bits 0-3) of the HL memory location before instruction
execution are copied to the lower nibble (bits 0-3) of the A register.

BIT b,r

BIT MANIPULATION

BINARY: 11001011 0Ol pppgqgagq
HEX:
r B C D E H L (HL) A
gaq 000 001 010 011 100 101 110 111
b ppp
0 000 CB40 CB41 CB42 CB43 CBR44 CB45 CB46 CB47
1 001 CB48 CB49 CB4A CB4B CB4cC CB4D CB4E CB4F
2 010 CB50 CB51 CB52 CB53 CB54 CB55 CB56 CB57
3 011 CB58 CB59 CB5A CB5B CB5C CB5D CB5E CB5F
4 100 CB60 CBo1l CB62 CB63 CBo64 CB65 CB66 CB67
5 101 CB68 CB69 CB6A CB6B CB6C CB6D CB6E CBo6F
6 110 CB70 CB71 CB72 CB73 CB74 CB75 CB76 CB77
7 111 CB78 CB79 CB7A CB7B CB7C CB7D CB7E CB7F
FLAGS: S Set if bit 7 is set and instruction is BIT7, else reset
Z Set if bit b is 0, else reset
H Set
P/V Set if bit b is 0, else reset
N Reset
C No change

TIMING: 1fr is B, C, D, E, H, L,

or A:

2 M cycles,

If F is (HL): 3 M cycles, 12 (4,4,4)

DESCRIPTION:

T-states.

(4,4)

T-states.

« If I is B, C, D, E, H, L, or A: The complement of bit b of register r

is copied to the Z flag.

e« If I is (HL): The complement of bit D of the memory location of the HL

register pair is copied to the Z flag.

Page 5-83

BIT MANIPULATION

BIT b,(ir+d)

BINARY: 11 0gl1101 11001011 dddddddd 0Ol pppl110O0
HEX:
ir IX IY
q 0 1
b | ppp
000 DDCB d 46 FDCB d 46
1 001 DDCB d 4E FDCB d 4E
2 010 DDCB d 56 FDCB d 56
3 011 DDCB d 5E FDCB d 5E
4 100 DDCB d 66 FDCB d 66
5 101 DDCB d 6E FDCB d 6E
6 110 DDCB d 76 FDCB d 76
7 111 DDCB d 7E FDCB d 7E
FLAGS: S Set if bit 7 is set and instruction is BIT 7, else reset
Z Set if bit b is 0, else reset
H Set
P/V Set if bit b is 0, else reset
N Reset
C No change

TIMING: 5 M cycles, 20 (4,4,3,5,4) T-states.

DESCRIPTION: The complement of bit D of the memory location determined by the sum of
the index register II' plus the displacement d is copied to the Z flag.
The displacement d is a two's complement byte value in the range of -128
to +127.

Page 5-84

RES b,r

BIT MANIPULATION

BINARY: 11001011 1 0pppgagq
HEX:
r B C D E H L (HL) A
qgqaq 000 001 010 011 100 101 110 111
b ppp
0 000 CB80 CB81 CB82 CB83 CB84 CB85 CB86 CB87
1 001 CB88 CB89 CB8A CB8B CB8C CB8D CBS8E CB8F
2 010 CB90 CB91 CB92 CB93 CB94 CB95 CB96 CB97
3 011 CB98 CB99 CB9A CB9B CB9C CB9D CBY9E CBOF
4 100 CBAO CBAl CBAZ2 CBA3 CBA4 CBAS CBAG6 CBA7
5 101 CBAS CBA9 CBAA CBAB CBAC CBAD CBAE CBAF
6 110 CBBO CBB1 CBB2 CBB3 CBB4 CBBb5 CBB6 CBB7
7 111 CBBS8 CBB9 CBBA CBBB CBBC CBBD CBBE CBBF
FLAGS: No change
TIMING: iIfr is B, C, D, E, H, L, or A: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 3 M cycles, 12 (4,4,4) T-states.

DESCRIPTION:

« Ifris B, C, D, E, H, L, or A: Bit b of register I is reset.

« If I is (HL): Bit b of the memory location of the HL register pair is
reset.

Page 5-85

BIT MANIPULATION

RES b,(ir+d)

BINARY: 11 0gl101 11001011 dddddddd 1 0pppl11O0
HEX: .
ir IX IY
q 0 1
b | ppp
000 DDCB d 86 FDCB d 86
1 001 DDCB d 8E FDCB d 8E
2 010 DDCB d 96 FDCB d 96
3 011 DDCB d 9E FDCB d 9E
4 100 DDCB d A6 FDCB d A6
5 101 DDCB d AE FDCB d AE
6 110 DDCB d B6 FDCB d B6
7 111 DDCB d BE FDCB d BE

FLAGS: No change
TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: Bit Db of the memory location determined by the sum of the index register
I plus the displacement d is reset.

Page 5-86

RES

b,r,(ir+d)

BIT MANIPULATION

BINARY: 11911101 |11001011|dddddddd| 10pppsss
HEX:

ir g

IX| O DDCB d 10sssppp sSss 000 001 010 011 100 101 111

IY|(1 FDCB d 10sssppp r B C D E H L A

PP 000 001 010 011 100 101 110 111

b 0 1 2 3 4 5 6 7
FLAGS: No change
TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.
DESCRIPTION: Bit b of the memory location determined by the sum of the index register

ir plus the displacement d is reset, and register I is loaded with the
contents of the memory location determined by the sum of the index
register II' plus the displacement d.

Page 5-87

BIT MANIPULATION

SET b,r

BINARY: 11001011 11l pppgagq
HEX:
r B C D E H L (HL) A
gqaq 000 001 010 011 100 101 110 111
b ppp
0 000 CBCO CBC1 CBC2 CBC3 CBC4 CBC5 CBC6 CBC7
1 001 CBCS8 CBC9 CBCA CBCB CBCC CBCD CBCE CBCF
2 010 CBDO CBD1 CBD2 CBD3 CBD4 CBDb5 CBD6 CBD7
3 011 CBDS8 CBD9 CBDA CBDB CBDC CBDD CBDE CBDF
4 100 CBEO CBE1 CBEZ2 CBE3 CBE4 CBES CBE6 CBE7
5 101 CBES CBE9 CBEA CBEB CBEC CBED CBEE CBEF
6 110 CBFO CBF1 CBF2 CBF3 CBF4 CBF5 CBF6 CBF7
7 111 CBFS8 CBF9 CBFA CBFB CBFC CBFD CBFE CBFF

FLAGS: No change

TIMING: iIfr is B, C, D, E, H, L, or A: 2 M cycles, 8 (4,4) T-states.
If I is (HL): 3 M cycles, 12 (4,4,4) T-states.

DESCRIPTION: =« If T is B, C, D, E, H, L, or A: Bit b of register I is set.

« If I is (HL): Bit b of the memory location of the HL register pair is
set.

Page 5-88

SET b, (ir+d)

BIT MANIPULATION

BINARY: 11 0gl101 11001011 dddddddd 11l pppl11O0
HEX: .
ir IX IY
q 0 1
b | ppp
000 DDCB d C6 FDCB d C6
1 001 DDCB d CE FDCB d CE
2 010 DDCB d D6 FDCB d D6
3 011 DDCB d DE FDCB d DE
4 100 DDCB d E6 FDCB d E6
5 101 DDCB d EE FDCB d EE
6 110 DDCB d F6 FDCB d F6
7 111 DDCB d FE FDCB d FE

FLAGS: No change

TIMING: 6 M cycles,

DESCRIPTION:

23

(4,4,3,5,4,3)

T-states.

Bit b of the memory location determined by the sum of the index register

ir plus the displacement d is set.

Page 5-89

BIT MANIPULATION

SET b,r,(ir+d)

BINARY: 11 gl1l1101 11001011 dddddddd l11lpppsss
HEX;
ir g
IX| O DDCB d 1llsssppp sSss 000 001 010 011 100 101 111
IY|(1 FDCB d 1llsssppp r B C D E H L A

pprp 000 001 010 011 100 101 110 111

b 0 1 2 3 4 5 6 7

FLAGS: No change

TIMING: 6 M cycles, 23 (4,4,3,5,4,3) T-states.

DESCRIPTION: Bit Db of the memory location determined by the sum of the index register
ir plus the displacement d is set, and register I is loaded with the
contents of the memory location determined by the sum of the index
register if plus the displacement d.

Page 5-90

INPUT and OUTPUT

IN A,n)

BINARY: 11011011 nnnnnnnn

HEX:

DB n

FLAGS: No change
TIMING: 3 M cycles, 11 (4,3,4) T-states.

DESCRIPTION: The A register is valued with the data in port N.

Page 5-91

IN r,(C)

INPUT and OUTPUT

BINARY: 11101101 0Ol ppp 000
HEX:
r ppp
B 000 ED40
C 001 ED48
D 010 ED50
E 011 ED58
H 100 ED60
L 101 ED68
(HL) 110 ED70 Sets flags only. No data is transferred.
A 111 ED78
FLAGS: S Set if input data is negative, else reset
Z Set if input data is zero, else reset
H Reset
P/V Set if input data has even parity, else reset
N Reset
C No change
TIMING: 3 M cycles, 12 (4,4,4) T-states.
DESCRIPTION:

Page 5-92

Ifr is B, C, D, E, H, L, or A, then register I is valued with the data

in port C.

IND

INPUT and OUTPUT

BINARY: 11101101 10101010
HEX:
EDAA
FLAGS: S To an indeterminate state
Z Set if B = 1 before instruction execution, else reset
H To an indeterminate state
P/V To an indeterminate state
N To an indeterminate state
C To an indeterminate state
TIMING: 4 M cycles, 16 (4,5,3,4) T-states.

DESCRIPTION:

The C register holds the address of the port that is used for input into
the memory location of the HL register pair. After the value on the data
in port C is written to the memory location of the HL register pair, the
HL register pair is decremented by one and the B register is decremented
by one.

Page 5-93

INDR

INPUT and OUTPUT

BINARY: 11101101 10111010
HEX:
EDBA

FLAGS: S Reset

Z Set

H To an indeterminate state

P/V To an indeterminate state

N To an indeterminate state

C To an indeterminate state
TIMING: If

DESCRIPTION:

Page 5-94

<> 1 before instruction execution: 5 M cycles, 21 (4,5,3,4,5) T-states.

1 before instruction execution:

4 M cycles, 16 (4,5,3,4) T-states.

The C register holds the address of the port that is used for input into
the memory location of the HL register pair. After the value on the data

in port C is written to the memory location of the HL register pair,

HL register pair is decremented by one and the B register is decremented
by one.

e If the B register is not zero
PC,

e If the B register is zero

program counter,

repeated.

counter, PC, continues.

(after being decremented),

(after being decremented), then the
is decremented by two and the instruction is

then the program

the

INI

INPUT and OUTPUT

BINARY: 11101101 10100010
HEX:
EDA2
FLAGS: S To an indeterminate state
Z Set if B= 1 before instruction execution,
H To an indeterminate state
P/V To an indeterminate state
N To an indeterminate state
C To an indeterminate state
TIMING: 4 M cycles, 16 (4,5,3,4) T-states.

DESCRIPTION:

else reset

The C register holds the address of the port that is used for input into
the memory location of the HL register pair. After the value on the data
in port C is written to the memory location of the HL register pair, the
HL register pair is incremented by one and the B register is decremented
by one.

Page 5-95

INIR

INPUT and OUTPUT

BINARY: 11101101 10110010
HEX:
EDB2

FLAGS: S Reset

Z Set

H To an indeterminate state

P/V To an indeterminate state

N To an indeterminate state

C To an indeterminate state
TIMING: If

DESCRIPTION:

Page 5-96

<> 1 before instruction execution: 5 M cycles, 21 (4,5,3,4,5) T-states.

1 before instruction execution:

4 M cycles, 16 (4,5,3,4) T-states.

The C register holds the address of the port that is used for input into
the memory location of the HL register pair. After the value on the data

in port C is written to the memory location of the HL register pair,

HL register pair is incremented by one and the B register is decremented
by one.

e If the B register is not zero
PC,

e If the B register is zero

program counter,

repeated.

counter, PC, continues.

(after being decremented),

(after being decremented), then the
is decremented by two and the instruction is

then the program

the

INPUT and OUTPUT

OUT (n),A

BINARY: 11010011 nnnnnnnn

HEX:

D3 n

FLAGS: No change
TIMING: 3 M cycles, 11 (4,3,4) T-states.

DESCRIPTION: The contents of the A register is written to port N.

Page 5-97

INPUT and OUTPUT

OUT (C)r

BINARY: 11101101 0O lppp0O01
HEX:

r ppp

B 000 ED41

C 001 ED49

D 010 ED51

E 011 ED59

H 100 ED61

L 101 ED69

(HL) 110 ED71 Zero 1is output to port.

A 111 ED79

FLAGS: No change
TIMING: 3 M cycles, 12 (4,4,4) T-states.

DESCRIPTION: 1fr is B, C, D, E, H, L, or A,
written to port N.

Page 5-98

then the contents of register I is

INPUT and OUTPUT

OUTD

BINARY: 11101101 10101011
HEX:
EDAB
FLAGS: S To an indeterminate state
Z Set if B= 1 before instruction execution, else reset
H Reset
P/V To an indeterminate state
N To an indeterminate state
C To an indeterminate state

TIMING: 4 M cycles, 16 (4,5,3,4) T-states.

DESCRIPTION: The memory location of the HL register pair contains the data to be
written to the address of the port in the C register. After the value
from the memory location of the HL register pair is written to port C,
the HL register pair is decremented by one and the B register is
decremented by one.

Page 5-99

OTDR

INPUT and OUTPUT

BINARY: 11101101 10111011
HEX:
EDBB
FLAGS: S Reset
Z Set
H To an indeterminate state
P/V To an indeterminate state
N To an indeterminate state
C To an indeterminate state
TIMING: If <> 1 before instruction execution: 5 M cycles, 21 (4,5,3,4,5) T-states.

DESCRIPTION:

Page 5-100

= 1 before instruction execution: 4 M cycles, 16 (4,5,3,4) T-states.

The memory location of the HL register pair contains the data to be
written to the address of the port in the C register. After the value
from the memory location of the HL register pair is written to port C,
the HL register pair is decremented by one and the B register is
decremented by one.

e If the B register is not zero (after being decremented), then the
program counter, PC, is decremented by two and the instruction is
repeated.

e If the B register is zero (after being decremented), then the program
counter, PC, continues.

INPUT and OUTPUT

OUTI

BINARY: 11101101 10100011
HEX:
EDA3
FLAGS: S To an indeterminate state
Z Set if B= 1 before instruction execution, else reset
H Reset
P/V To an indeterminate state
N To an indeterminate state
C To an indeterminate state

TIMING: 4 M cycles, 16 (4,5,3,4) T-states.

DESCRIPTION: The memory location of the HL register pair contains the data to be
written to the address of the port in the C register. After the value
from the memory location of the HL register pair is written to port C,
the HL register pair is incremented by one and the B register is
decremented by one.

Page 5-101

OTIR

INPUT and OUTPUT

BINARY: 11101101 10110011
HEX:
EDB3
FLAGS: S Reset
Z Set
H To an indeterminate state
P/V To an indeterminate state
N To an indeterminate state
C To an indeterminate state
TIMING: If <> 1 before instruction execution: 5 M cycles, 21 (4,5,3,4,5) T-states.

DESCRIPTION:

Page 5-102

= 1 before instruction execution: 4 M cycles, 16 (4,5,3,4) T-states.

The memory location of the HL register pair contains the data to be
written to the address of the port in the C register. After the value
from the memory location of the HL register pair is written to port C,
the HL register pair is incremented by one and the B register is
decremented by one.

e If the B register is not zero (after being decremented), then the
program counter, PC, is decremented by two and the instruction is
repeated.

e If the B register is zero (after being decremented), then the program
counter, PC, continues.

16-BIT LOAD

00pp 0001

nnnnmnmn,nmn

mmmmummmm

LD rr,mn
BINARY:
HEX:
rr pp
BC 00 01 nm
DE 01 11 nm
HL 10 21 nm
SP 11 31 nm
FLAGS: No change
TIMING: 3 M cycles,
DESCRIPTION:

(4,3,3) T-states.

Register pair IT is loaded with the word value MN.

Page 5-103

LD

16-BIT LOAD

rr,(mn)

BINARY: 11101101 0Ol pplO1l11 nnnnnnnn mmmmmumm m
HEX:
rr PP
BC 00 ED4B nm
DE 01 ED5B nm
SP 11 ED7B nm
FLAGS: No change
TIMING: 6 M cycles, 20 (4,4,3,3,3,3) T-states.
DESCRIPTION: The low order portion of register pair IT is loaded with the contents of

Page 5-104

memory location MN. The high order portion of register pair [T is loaded
with the contents of memory location MN+1.

The low order portion of the BC register pair is the C register, and

the high order portion of the BC register pair is the B register. The
low order portion of the DE register pair is the E register, and the

high order portion of the DE register pair is the D register. The low
order portion of the HL register pair is the L register, and the high
order portion of the HL register pair is the H register.

16-BIT LOAD

LD (mn),rr

BINARY: 11101101 0Ol pp 0011 nnnnnnnn mmmmmumm m
HEX:
rr PP
BC 00 ED43 nm
DE 01 ED53 nm
SP 11 ED73 nm
FLAGS: No change
TIMING: 6 M cycles, 20 (4,4,3,3,3,3) T-states.

DESCRIPTION: Memory location MN is loaded with the contents of the low order portion

of register pair If. Memory location MN+1 is loaded with the contents of
the high order portion of register pair IT.

The low order portion of the BC register pair is the C register, and

the high order portion of the BC register pair is the B register. The
low order portion of the DE register pair is the E register, and the

high order portion of the DE register pair is the D register. The low
order portion of the HL register pair is the L register, and the high
order portion of the HL register pair is the H register.

Page 5-105

16-BIT LOAD

LD irmn

BINARY: 11 gl11101 00100001 nnnnnnnn mmmmmumm m

HEX:

ir q

IX 0 DD21 nm

IY 1 FD21 nm

FLAGS: No change
TIMING: 4 M cycles, 14 (4,4,3,3) T-states.

DESCRIPTION: 1Index register pair If is loaded with the word value MN.

Page 5-106

LD ir,(mn)

16-BIT LOAD

BINARY: 11 gl11101 00101010 nnnnnnnn mmmmmumm m
HEX:

ir q

IX DD2A nm

IY 1 FD2A nm
FLAGS: No change

TIMING: 6 M cycles,

DESCRIPTION:

(4,4,3,3,3,3)

T-states.

The low order portion of index register pair ir is loaded with the

contents of memory location MN.

The high order portion of index

register pair ir is loaded with the contents of memory location MN+1.

The low order portion of the IX register pair is the LX register, and
the high order portion of the IX register pair is the HX register. The
low order portion of the |IY register pair is the LY register, and the
high order portion of the |IY register pair is the HY register.

Page 5-107

16-BIT LOAD

LD (mn),ir

BINARY: 11 gl11101 00100010 nnnnnnnn mmmmmumm m
HEX:

ir q

IX DD22 nm

IY 1 FD22 nm
FLAGS: No change

TIMING: 6 M cycles, 20 (4,4,3,3,3,3) T-states.

DESCRIPTION:

Page 5-108

Memory location MN is loaded with the contents of the low order portion
of index register iIf. Memory location MN+1 is loaded with the contents
of the high order portion of index register II.

The low order portion of the IX register pair is the LX register, and
the high order portion of the IX register pair is the HX register. The
low order portion of the |IY register pair is the LY register, and the
high order portion of the IY register pair is the HY register.

16-BIT LOAD

LD HL,(mn)

BINARY: 00101010 nnnnnnnn

mmmmTimmmm

HEX:

2A nm

FLAGS: No change

TIMING: 5 M cycles, 16 (4,3,3,3,3) T-states.

DESCRIPTION: The L register is loaded with the contents of memory location MN, and
the H register is loaded with the contents of memory location MN+1.

Page 5-109

16-BIT LOAD

LD (mn),HL

BINARY: 00100010 nnnnnnnn mmumimIumImimm

HEX:

22 nm

FLAGS: No change
TIMING: 5 M cycles, 16 (4,3,3,3,3) T-states.

DESCRIPTION: The contents of the L register is loaded into memory location MN, and
the contents of the H register is loaded into memory location MN+1.

Page 5-110

16-BIT LOAD

LD SP,HL

BINARY: 11111001

HEX:

F9

FLAGS: No change
TIMING: 1 M cycle, 6 T-states.

DESCRIPTION: The stack pointer, SP, is loaded with the contents of the HL register
pair.

Page 5-111

16-BIT LOAD

LD SP,ir

BINARY: 11 g11101 11111001

HEX:

ir q

IX 0 DDF'9

IY 1 FDF9

FLAGS: No change
TIMING: 2 M cycles, 10 (4,6) T-states.

DESCRIPTION: The stack pointer, SP, is loaded with the contents of index register
pair II.

Page 5-112

16-BIT LOAD

EX DE,HL

BINARY: 11101101

HEX:

EB

FLAGS: No change

TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: The contents of the DE register pair is exchanged with the contents of
the HL register pair (the contents of the E register is exchanged with

the contents of the L register, and the contents of the D register is
exchanged with the contents of the H register).

Page 5-113

16-BIT LOAD

EXX

BINARY: 11011001

HEX:

D9

FLAGS: No change
TIMING: 1 M cycle, 4 T-states.
DESCRIPTION: The contents of the main BC, DE, and HL register pairs are exchanged

with the contents of the alternate BC, DE, and HL register pairs, BC,
DE’, and HL'.

Page 5-114

PUSH

16-BIT LOAD

I'r

BINARY: 11 pp0101
HEX:
rr)
BC 00 C5
DE 01 D5
HL 10 ES
AF 11 F5
FLAGS: No change
TIMING: 3 M cycles, 11 (5,3,3) T-states.

DESCRIPTION: The stack pointer, SP, is decremented; the memory location of the stack

pointer, SP, is loaded with the contents of the high order portion of
register pair IT; then the stack pointer, SP, is decremented again; and
the memory location of the stack pointer, SP, is loaded with the
contents of the low order portion of register pair IT.

The low order portion of the BC register pair is the C register, and
the high order portion of the BC register pair is the B register. The
low order portion of the DE register pair is the E register, and the
high order portion of the DE register pair is the D register. The low
order portion of the HL register pair is the L register, and the high
order portion of the HL register pair is the H register. The low order
portion of the AF register pair is the F register, and the high order
portion of the AF register pair is the A register.

Page 5-115

PUSH

16-BIT LOAD

BINARY: 11 gl11101 11100101
HEX:

ir q

IX DDES

IY 1 FDES

FLAGS: No change

TIMING: 4 M cycles, 15 (4,5,3,3) T-states.

DESCRIPTION:

Page 5-116

The stack pointer, SP, is decremented; the memory location of the stack
pointer, SP, is loaded with the contents of the high order portion of
index register pair ir; then the stack pointer, SP, is decremented again;
and the memory location of the stack pointer, SP, is loaded with the
contents of the low order portion of index register pair ir.

The low order portion of the IX register pair is the LX register, and
the high order portion of the IX register pair is the HX register. The
low order portion of the |IY register pair is the LY register, and the
high order portion of the |IY register pair is the HY register.

POP

16-BIT LOAD

Ir

BINARY: 11 pp000O01
HEX:

rr PP

BC 00 Cl

DE 01 D1

HL 10 El

AF 11 Fl
FLAGS: No change if IT is BC, DE, or HL.

If AF, then the flags depend on the value loaded into flag register F.

TIMING: 3 M cycles, 10 (4,3,3) T-states.

DESCRIPTION: The low order portion of register IT is loaded with the contents of the

memory location of the stack pointer, SP; the stack pointer, SP, is
incremented; then the high order portion of register [T is loaded with
the contents of the memory location of the stack pointer, SP; and the
stack pointer, SP, is incremented again.

The low order portion of the BC register pair is the C register, and
the high order portion of the BC register pair is the B register. The
low order portion of the DE register pair is the E register, and the
high order portion of the DE register pair is the D register. The low
order portion of the HL register pair is the L register, and the high
order portion of the HL register pair is the H register. The low order
portion of the AF register pair is the F register, and the high order
portion of the AF register pair is the A register.

Page 5-117

POP ir

16-BIT LOAD

BINARY: 11 g11101 11100001
HEX:

ir q

IX DDE1

IY 1 FDE1L

FLAGS: No change

TIMING: 4 M cycles, 14 (4,4,3,3) T-states.

DESCRIPTION:

Page 5-118

The low order portion of index register ir is loaded with the contents of
the memory location of the stack pointer, SP; the stack pointer, SP, is
incremented; then the high order portion of index register ir is loaded
with the contents of the memory location of the stack pointer, SP; and
the stack pointer, SP, is incremented again.

The low order portion of the IX register pair is the LX register, and
the high order portion of the IX register pair is the HX register. The
low order portion of the |IY register pair is the LY register, and the
high order portion of the |IY register pair is the HY register.

16-BIT LOAD

EX (SP),HL

BINARY: 11100011

HEX:

E3

FLAGS: No change

TIMING: 5 M cycles, 19 (4,3,4,3,5) T-states.

DESCRIPTION: The contents of the L register is exchanged with the contents of the
memory location of the stack pointer, SP. The contents of the H

register is exchanged with the memory location of the stack pointer plus
1, SP+1.

Page 5-119

16-BIT LOAD

EX (SP),ir

BINARY: 11 gl1l1101 11100011
HEX:

ir q

IX DDE3

IY 1 FDE3
FLAGS: No change

TIMING: 6 M cycles, 23 (4,4,3,4,3,5) T-states.

DESCRIPTION:

Page 5-120

The low order portion of index register ir is exchanged with the contents
of the memory location of the stack pointer, SP. The high order portion
of index register ir is exchanged with the contents of the memory
location of the stack pointer plus 1, SP +1.

The low order portion of the IX register pair is the LX register, and
the high order portion of the IX register pair is the HX register. The
low order portion of the |IY register pair is the LY register, and the
high order portion of the |IY register pair is the HY register.

16-BIT ARITHMETIC

ADC HL,rmr

BINARY: 11101101 0Ol ppl01O0

HEX:
rr PP

BC 00 ED4A

DE 01 ED5A

HL 10 ED6A

SP 11 ED7A

FLAGS: S Set if result is negative, else reset
Z Set if result is zero, else reset
H Set if carry from bit 11, else reset
P/V Set if overflow, else reset
N Reset
C Set if carry from bit 15, else reset

TIMING: 4 M cycle, 15 (4,4,4,3) T-states.
DESCRIPTION: The contents of register pair IT and the contents of the Carry Bit are

added to the contents of the HL register pair, and the result is stored
in the HL register pair.

Page 5-121

16-BIT ARITHMETIC

ADD HL,rr

BINARY: 00ppl001

HEX:
rr PP

BC 00 09

DE 01 19

HL 10 29

SP 11 39

FLAGS: S No change

Z No change

H Set if carry from bit 11, else reset
P/V No change

N Reset

C Set if carry from bit 15, else reset

TIMING: 3 M cycles, 11 (4,4,3) T-states.

DESCRIPTION: The contents of register pair IT is added to the contents of the HL
register pair, and the result is stored in the HL register pair.

Page 5-122

16-BIT ARITHMETIC

ADD ir,rr
BINARY: 11 gl1101 0O 0pplOoO01l
HEX:
ir IX IY
q 0 1
rr PP
BC 00 DD 09 FD 09
DE 01 DD 19 FD 19
IX 10 DD 29
IY 10 FD 29
SP 11 DD 39 FD 39
FLAGS: S No change
Z No change
H Set if carry from bit 11, else reset
P/V No change
N Reset
C Set if carry from bit 15, else reset
TIMING: 4 M cycles, 15 (4,4,4,3) T-states.
DESCRIPTION:

The contents of register pair IT or index register pair ir is added to
the contents of index register pair I, and the result is stored in index
register pair II.

Page 5-123

DEC 1r
BINARY: 0O 0Opplo01l11
HEX:

rr PP

BC 00 0B

DE 01 1B

HL 10 2B

SP 11 3B
FLAGS: No change
TIMING: 1 M cycle, 6 T-states.
DESCRIPTION:

Page 5-124

16-BIT ARITHMETIC

Register pair IT is decremented by one.

16-BIT ARITHMETIC

DEC ir

BINARY: 11 gl1l1101 00101011

HEX:

ir q

IX 0 DD2B

IY 1 FD2B

FLAGS: No change
TIMING: 2 M cycles, 10 (4,6) T-states.

DESCRIPTION: 1Index register pair Il is decremented by one.

Page 5-125

INC rr
BINARY: 0O 0pp 0011
HEX:

rr PP

BC 00 03

DE 01 13

HL 10 23

SP 11 33
FLAGS: No change
TIMING: 1 M cycle, 6 T-states.
DESCRIPTION:

Page 5-126

16-BIT ARITHMETIC

Register pair IT is incremented by one.

16-BIT ARITHMETIC

INC ir

BINARY: 11 gl1l11101 00100011

HEX:
ir q

IX 0 DD23

IY 1 FD23

FLAGS: No change
TIMING: 2 M cycles, 10 (4,6) T-states.

DESCRIPTION: Index register pair If is incremented by one.

Page 5-127

16-BIT ARITHMETIC

SBC HL,r

BINARY: 11101101 0Ol ppO001O0

HEX:
rr PP

BC 00 ED42

DE 01 ED52

HL 10 ED62

SP 11 ED72

FLAGS: S Set if result negative, else reset
Z Set if result zero, else reset
H Set if borrow from bit 12, else reset
P/V Set if overflow, else reset
N Set
C Set if borrow, else reset

TIMING: 4 M cycles, 15 (4,4,4,3) T-states.
DESCRIPTION: The contents of register pair IT and the contents of the Carry Bit are

subtracted from the HL register pair, and the result is stored in the HL
register pair.

Page 5-128

BRANCH

JP mn

BINARY: 11000011 nnnnnnnn mmumImTImTImimm

HEX:

C3 nm

FLAGS: No change
TIMING: 3 M cycles, 10 (4,3,3) T-states.

DESCRIPTION: The program counter, PC, is loaded with the value MN, and program
execution branches to memory location MN.

Page 5-129

BRANCH

JP cc,mn

BINARY: 11 ppp 010 nnnnnnnn mmmmmumm m
HEX:
Condition flag
Description cc state Prpe
non-zero NZ 0 000 C2 nm
zero Z 1 001 CA nm
non-carry NC 0 010 D2 nm
carry C 1 011 DA nm
parity odd PO 0 100 E2 nm
parity even PE 1 101 EA nm
sign positive| P 0 110 F2 nm
sign negative| M 1 111 FA nm

FLAGS: No change
TIMING: 3 M cycles, 10 (4,3,3) T-states.
DESCRIPTION: ¢ If condition CC is true, then the program counter, PC, is loaded with

the value MN, and program execution branches to memory location MN.
e If condition CC is not true, then the program counter, PC, continues.

Page 5-130

BRANCH

JP (HL)

BINARY: 11101001

HEX:

E9

FLAGS: No change
TIMING: 1 M cycle, 4 T-states.

DESCRIPTION: The program counter, PC, is loaded with the contents of the HL register
pair, and program execution branches to the memory location of the HL
register pair.

Page 5-131

BRANCH

JP (ir)

BINARY: 11 gl1l11101 11101001

HEX:

ir q

IX 0 DDE9

IY 1 FDE9

FLAGS: No change
TIMING: 2 M cycles, 8 (4,4) T-states.
DESCRIPTION: The program counter, PC, is loaded with the contents of index register

I, and program execution branches to the memory location of index
register pair II.

Page 5-132

BRANCH

JR d

BINARY: 00011000 dddddddd

HEX:

18 d

FLAGS: No change

TIMING: 4 M cycles, 12 (4,3,5) T-states.

DESCRIPTION: The program counter, PC, branches to the memory location determined by
the displacement, d. The displacement is a two's complement byte value

in the range of -128 to +127. The branched to memory location is in the
range of -126 (-128 +2) to +129 (+127 +2) from the JR instruction.

Page 5-133

BRANCH

JR cc,d

BINARY: 001l pp 000 dddddddd
HEX:
Condition flag
Description cc state PP
non-zero NZ 0 00 20 d
zZero Z 1 01 28 d
non-carry N 0 10 30 d
carry C 1 11 38 d

FLAGS: No change

TIMING: If condition CC is true: 4 M cycles, 12 (4,3,5) T-states.
If condition CC is not true: 2 M cycles, 7 (4,3) T-states.

DESCRIPTION: ¢ If condition CC is true, then the program counter, PC, branches to the
memory location determined by the displacement, d. The displacement is
a two's complement byte value in the range of -128 to +127. The
branched to memory location is in the range of -126 (-128 +2) to +129
(+127 +2) from the JR instruction.
e If condition CC is not true, then the program counter, PC, continues.

Page 5-134

BRANCH

DIJNZ d

BINARY: 00010000O0 dddddddd

HEX:

10 d

FLAGS: No change

TIMING: If B <> 1 before instruction execution: 4 M cycles, 13 (4,3,3,3) T-states.
If B = 1 before instruction execution: 2 M cycles, 8 (4,4) T-states.

DESCRIPTION: Decrement (B) and jump non-zero.

e« If B <> 1 before instruction execution, then the program counter, PC,
branches to the memory location determined by the displacement, d. The
displacement is a two's complement byte value in the range of -128 to
+127. The branched to memory location is in the range of -126 (-128
+2) to +129 (+127 +2) from the DJINZ instruction.

e« If B = 1 before instruction execution, then the program counter, PC,
continues.

Although this instruction is named decrement and jump non-zero, the
flags are not changed. This is also true if B was valued with one before
instruction execution. i.e., the “2” flag does not change with this
instruction.

Page 5-135

BRANCH

CALL mn

BINARY: 11001101 nnnnnnnn mmumImTIumTImimm

HEX:

CD nm

FLAGS: No change

TIMING: 5 M cycles, 17 (4,3,4,3,3) T-states.

DESCRIPTION:

Page 5-136

The stack pointer, SP, is decremented; the memory location of the stack
pointer, SP, is loaded with the contents of the high order portion of
the program counter, PC; then the stack pointer, SP, is decremented
again; and the memory location of the stack pointer, SP, is loaded with
the contents of the low order portion of the program counter, PC. The
program counter, PC, is loaded with the value MN, and program execution
branches to memory location MN.

BRANCH

CALL cc,mn

BINARY: 11 pppl00O0 nnnnnnnn mmmmmumm m
HEX:
Condition flag
Description cc state Prpe
non-zero NZ 0 000 C4 nm
zero Z 1 001 CC nm
non-carry NC 0 010 D4 nm
carry C 1 011 DC nm
parity odd PO 0 100 E4 nm
parity even PE 1 101 EC nm
sign positive| P 0 110 F4 nm
sign negative| M 1 111 FC nm

FLAGS: No change

TIMING: If condition CC is true: 5 M cycles, 17 (4,3,4,3,3) T-states.
If condition CC is not true: 3 M cycles, 10 (4,3,3) T-states.

DESCRIPTION:

If condition CC is true, then the stack pointer, SP, is decremented;
the memory location of the stack pointer, SP, is loaded with the
contents of the high order portion of the program counter, PC; then
the stack pointer, SP, is decremented again; and the memory location
of the stack pointer, SP, is loaded with the contents of the low order
portion of the program counter, PC. The program counter, PC, is
loaded with the value MN, and program execution branches to memory
location MN.

If condition CC is not true, then the program counter, PC, continues.

Page 5-137

RET

BRANCH

BINARY: 11001001

HEX:

C9

FLAGS: No change

TIMING: 3 M cycles, 10 (4,3,3) T-states.

DESCRIPTION:

Page 5-138

The low order portion of the program counter, PC, is loaded with the
contents of the memory location of the stack pointer, SP; the stack
pointer, SP, is incremented; then the high order portion of the program
counter, PC, is loaded with the contents of the memory location of the
stack pointer, SP; and the stack pointer, SP, is incremented again.
Program execution branches to the address in the program counter, PC.

RET cc

BRANCH

BINARY: 11 ppp 000

HEX:
Condition flag
Description ccC state pPppP
non-zero NZ 0 000 CO
zero Z 1 001 C8
non-carry NC 0 010 DO
carry C 1 011 D8
parity odd PO 0 100 EO
parity even PE 1 101 E8
sign positive 0 110 FO
sign negative| M 1 111 F8

FLAGS: No change

TIMING: If condition CC is true: 3 M cycles, 11 (5,3,3) T-states.
If condition CC is not true: 1 M cycles, 5 T-states.

DESCRIPTION: « If condition CC is true,
counter, PC,

stack pointer,

SP;

then The low order portion of the program
is loaded with the contents of the memory location of the
the stack pointer, SP, is incremented; then the

high order portion of the program counter, PC, is loaded with the
contents of the memory location of the stack pointer, SP; and the

stack pointer,

SP,

is incremented again. Program execution branches to

the address in the program counter, PC.

¢ If condition CC is not true,

then the program counter, PC, continues.

Page 5-139

RETI

BRANCH

BINARY: 11101101 01001101

HEX:

ED4D

FLAGS: No change

TIMING: 4 M cycles, 14 (4,4,3,3) T-states.

DESCRIPTION:

Page 5-140

Return from maskable interrupt. The low order portion of the program
counter, PC, is loaded with the contents of the memory location of the
stack pointer, SP; the stack pointer, SP, is incremented; then the high
order portion of the program counter, PC, is loaded with the contents of
the memory location of the stack pointer, SP; and the stack pointer,

SP, is incremented again. Program execution branches to the address in
the program counter, PC.

RETI must be used with interrupt mode 2 (IM 2) to enable daisy-chained
interrupting devices to have the device’s interrupt condition reset.

RETN

BRANCH

BINARY: 11101101 01000101

HEX:

ED45

FLAGS: No change

TIMING: 4 M cycles, 14 (4,4,3,3) T-states.

DESCRIPTION:

Return from non-maskable interrupt. The low order portion of the program
counter, PC, is loaded with the contents of the memory location of the
stack pointer, SP; the stack pointer, SP, is incremented; then the high
order portion of the program counter, PC, is loaded with the contents of
the memory location of the stack pointer, SP; and the stack pointer,

SP, is incremented again. Program execution branches to the address in
the program counter, PC. The contents of IFF, is copied back into IFF; to
restore IFF; to its state prior to the non-maskable interrupt.

Page 5-141

RST n

BRANCH

BINARY: ll1lppplli1l
HEX:
n ppPp
00H 000 Cc7
08H 001 CF
10H 010 D7
18H 011 DF
20H 100 E7
28H 101 EF
30H 110 F7
38H 111 FF
FLAGS: No change
TIMING: 3 M cycles, 11 (5,3,3) T-states.
DESCRIPTION: The stack pointer, SP, is decremented; the memory location of the stack

Page 5-142

pointer, SP, is loaded with the contents of the high order portion of
the program counter, PC; then the stack pointer, SP, is decremented
again; and the memory location of the stack pointer, SP, is loaded with
the contents of the low order portion of the program counter, PC. The
program counter, PC, is loaded with the value N, and program execution
branches to memory location N.

COPY/MOVE

LDD

BINARY: 11101101 10101000

HEX:

EDAS

FLAGS: S No change

Z No change

H Reset

P/V Set if BC <> 1 before instruction execution, else reset
N Reset

C No change

TIMING: 4 M cycles. 16 (4,4,3,5) T-states.

DESCRIPTION: The contents of the memory location of the HL register pair is copied to
the memory location of the DE register pair; the DE and HL register
pairs are decremented by one, and the BC register pair is decremented by
one.

Page 5-143

LDDR

COPY/MOVE

BINARY: 11101101 10111000
HEX:
EDBS8
FLAGS: S No change
Z No change
H Reset
P/V Reset
N Reset
C No change
TIMING: If <> 1 before instruction execution: 5 M cycles, 21 (4,4,3,5,5) T-states.
If = 1 before instruction execution: 4 M cycles, 16 (4,4,3,5) T-states.
DESCRIPTION: The contents of the memory location of the HL register pair is copied to

Page 5-144

the memory location of the DE register pair; the DE and HL register

pairs are decremented by one, and the BC register pair is decremented by

one.

e If the BC register pair is not zero (after being decremented), then
the program counter, PC, is decremented by two and the instruction is
repeated.

e If the BC register pair is zero (after being decremented), then the
program counter, PC, continues.

COPY/MOVE

LDI

BINARY: 11101101 10100000

HEX:

EDAO

FLAGS: S No change

Z No change

H Reset

P/V Set if BC <> 1 before instruction execution, else reset
N Reset

C No change

TIMING: 4 M cycles. 16 (4,4,3,5) T-states.

DESCRIPTION: The contents of the memory location of the HL register pair is copied to
the memory location of the DE register pair; the DE and HL register
pairs are incremented by one, and the BC register pair is decremented by
one.

Page 5-145

LDIR

COPY/MOVE

BINARY: 11101101 10110000
HEX:
EDBRO
FLAGS: S No change
Z No change
H Reset
P/V Reset
N Reset
C No change
TIMING: If <> 1 before instruction execution: 5 M cycles, 21 (4,4,3,5,5) T-states.
If = 1 before instruction execution: 4 M cycles, 16 (4,4,3,5) T-states.
DESCRIPTION: The contents of the memory location of the HL register pair is copied to

Page 5-146

the memory location of the DE register pair; the DE and HL register

pairs are incremented by one, and the BC register pair is decremented by

one.

e If the BC register pair is not zero (after being decremented), then
the program counter, PC, is decremented by two and the instruction is
repeated.

e If the BC register pair is zero (after being decremented), then the
program counter, PC, continues.

CPD

SEARCH

BINARY: 11101101 10101001
HEX:
EDAS
FLAGS: S Set if result is negative, else reset
Z Set if A = (HL), before instruction execution, else reset
H Set i1f borrow from bit 4, else reset
P/V Set if BC <> 1 before instruction execution, else reset
N Set
C No change

TIMING: 4 M cycles, 16 (4,4,3,5) T-states.

DESCRIPTION:

The

contents of the memory location of the HL register pair is

subtracted from the contents of the Aregister to affect all flags
except the C flag. The contents of the Aregister is unchanged. The HL
register pair is decremented by one, and the and BC register pair is
decremented by one.

Page 5-147

CPDR

SEARCH

BINARY: 11101101 10111001
HEX:
EDBY9
FLAGS: S Set if result is negative, else reset
7 Set if A = (HL), else reset
H Set i1f borrow from bit 4, else reset
P/V Set if BC <> 1 before instruction execution, else reset
N Set
C No change
TIMING: If <> 1 before instruction execution: 5 M cycles, 21 (4,4,3,5,5) T-states.
If = 1 before instruction execution: 4 M cycles, 16 (4,4,3,5) T-states.
DESCRIPTION: The contents of the memory location of the HL register pair is

Page 5-148

subtracted from the contents of the Aregister to affect all flags

except the C flag. The contents of the Aregister is unchanged. The HL

register pair is decremented by one, and the and BC register pair is
decremented by one.

e If the BC register pair is not zero (after being decremented) and A
<> (HL), then the program counter, PC, is decremented by two and the
instruction is repeated.

e If the BC register is zero (after being decremented) or A = (HL) then
the program counter, PC, continues.

CPI

SEARCH

BINARY: 11101101 101 00O0O01
HEX:
EDAL
FLAGS: S Set if result is negative, else reset
Z Set if A = (HL), before instruction execution, else reset
H Set i1f borrow from bit 4, else reset
P/V Set if BC <> 1 before instruction execution, else reset
N Set
C No change

TIMING: 4 M cycles.

DESCRIPTION:

The

16 (4,4,3,5) T-states.

contents of the memory location of the HL register pair is

subtracted from the contents of the Aregister to affect all flags
except the C flag. The contents of the Aregister is unchanged. The HL
register pair is incremented by one, and the and BC register pair is
decremented by one.

Page 5-149

CPIR

SEARCH

BINARY: 11101101 10110001
HEX:
EDB1
FLAGS: S Set if result is negative, else reset
7 Set if A = (HL), else reset
H Set i1f borrow from bit 4, else reset
P/V Set if BC <> 1 before instruction execution, else reset
N Set
C No change
TIMING: If <> 1 before instruction execution: 5 M cycles, 21 (4,4,3,5,5) T-states.
If = 1 before instruction execution: 4 M cycles, 16 (4,4,3,5) T-states.
DESCRIPTION: The contents of the memory location of the HL register pair is

Page 5-150

subtracted from the contents of the Aregister to affect all flags

except the C flag. The contents of the Aregister is unchanged. The HL

register pair is incremented by one, and the and BC register pair is
decremented by one.

e If the BC register pair is not zero (after being decremented) and A
<> (HL), then the program counter, PC, is decremented by two and the
instruction is repeated.

e If the BC register is zero (after being decremented) or A = (HL) then
the program counter, PC, continues.

Z80 Flags

The 280® has two 8-bit flag registers F and F'. The bits are set or reset by various
CPU instructions. Zilog, Inc. assigned names to six of the eight bits: bits 3 and 5
are not assigned nor affects documented. Four bits are testable and are used for
conditional branching: S, Z, P/NV, and C. The flag bit affects shown here are what the
flags actually do. All of the other publications I have seen on 280® flags are
incorrect.

In addition to CPU instructions, a program can manipulate the flag bits because they
are in specific positions in the following format:

bit 7 6 5 4 3 2 1 0

flag S Z * H * P/V N C

bit flag definition
7 SIGN
6 Z ZERO
5 * not used
4 H HALF CARRY
3 * not used
2 PV PARITY/OVERFLOW
1 N ADD/SUBTRACT
0 C CARRY
SIGN flag: S
Mnemonic: SIGN flag set = M e.g., branch if sign is negative (S=1): JP M, mn
SIGN flag reset = P e.g., branch if sign is positive (S=0): JP P, mn

The SIGN flag is set if the result of an arithmetic instruction using signed numbers
is negative. Basically, 8-bit signed numbers are a two's complement byte value in the
range of -128 to +127, and 16-bit signed numbers are a two's complement word value in
the range of -32768 to +32767. The most significant bit is reset for positive signed
numbers and set for negative signed numbers; therefore, an 8-bit representation of -16
is 11110000. Arithmetic instructions reflect the state of the most significant bit of
the result in the SIGN flag. If the most significant bit of a result is set, then the
SIGN flag is set. If the most significant bit of the result is reset, then the SIGN
flag is reset.

Instructions that place the SIGN flag into an indeterminate state:

IND INI OuUTD OUTI

Instructions that reset the SIGN flag:
SRL INDR INIR OTDR OTIR

Other instructions that affect the SIGN flag:
EX AFAF LD A,sr AND OR XOR NEG DAA
RL RLC RR RRC SLA SLL SRA
RLD RRD BIT IN r,(C) POP AF CPD CPDR
CPI CPIR

Arithmetic instructions that do not change the SIGN flag:
ADD HL,Ir ADD ir,rr DEC 1r DEC ir INC 1r INC ir

Page 6-1

Z80 Flags

ZERO flag: Z
Mnemonic: ZERO flag set = Z e.g., branch if zero (Z=1): Jp Z ,mn
ZERO flag reset = NZ e.g., branch if not zero (Z=0): JP NZ,mn

The zero flag is set if the result of an arithmetic instruction is zero. Remember the
CP instruction performs a subtraction without affecting the contents in the A
register. So, if the A register contained 23H and the L register contained 23H, then a
CP AL instruction would result in the ZERO flag set. Also, if the sum of an add
instruction is exactly one more than the maximum value for resultant register/register
pair, then the ZERO (and CARRY) flag is set.

Other instructions that affect the ZERO flag:

EX AFAF LD Asr AND OR XOR NEG DAA
RL RLC RR RRC SLA SLL SRA
RLD SRL RRD BIT IN r,(C) POP AF CPD
CPDR CPI CPIR

Arithmetic instructions that do not change the ZERO flag:
ADD HL,rr ADD ir,rr DEC rr DEC ir INC rr INC ir

Instructions that set the ZERO flag:
INDR INIR OTDR OTIR

HALF CARRY flag: H

The HALF CARRY flag is set by the execution of: an 8-bit arithmetic instruction that
produces a carry from bit 3 into bit 4, or a borrow from bit 4 into bit 3; a 1l6-bit
arithmetic instruction that produces a carry from bit 11 into bit 12, or a borrow from
bit 12 into bit 11. The HALF CARRY flag is tested only with the DAA instruction to
correct the result after a BCD add or subtract instruction.

The CCF instruction copies the state of the CARRY flag before instruction execution
into the HALF CARRY flag.

Instructions that place the HALF CARRY flag into an indeterminate state:

IND INDR INI INIR OTDR OTIR OuUTD
OUTI

Instructions that reset the HALF CARRY flag:
LD A,sr OR XOR SCF RLA RLCA RRA
RRCA RL RLC RR RRC SLA SLL
SRA SRL RLD RRD IN r,(C) LDD LDDR
LDI LDIR

Other instructions that affect the HALF CARRY flag:
EX AFAF NEG DAA POP AF CPD CPDR CPI
CPIR

Instructions that set the HALF CARRY flag:
AND CPL BIT

Page 6-2

Z80 Flags

PARITY/OVERFLOW flag: P/V

Mnemonic: P/V flag set = PE e.g., branch if even parity (P/V=1l): JP PE, mn
P/V flag reset = PO e.g., branch if odd parity (P/V=0): JP PO, mn

The PARITY/OVERFLOW flag serves three purposes: parity, other, and overflow.

PARITY

For AND, OR, XOR, and IN r,(C) instructions: the PARITY/OVERFLOW flag is set if the
result has an even number of bits set; the PARITY/OVERFLOW flag is reset if the result
has an odd number of bits set.

OTHER
After the execution of a CPI, CPIR, CPD, CPDR, LDI, or LDD instruction, the
PARITY/OVERFLOW flag reflects the status of the BC register pair: if the BC register

pair is not zero, then the PARITY/OVERFLOW flag is set; if the BC register pair is
zero, then the PARITY/OVERFLOW flag is reset.

The LD A, and LD AR instructions affect the PARITY/OVERFLOW flag as follows:
NMOS chip: If Interrupt Flip-Flop 2 (IFF,) is set, then the PARITY/OVERFLOW flag
may or may not be set. If Interrupt Flip-Flop 2 is reset, then the
PARITY/OVERFLOW flag is reset.

CMOS chip: If Interrupt Flip-Flop 2 (IFF,) is set, then the PARITY/OVERFLOW flag
is set. If Interrupt Flip-Flop 2 is reset, then the PARITY/OVERFLOW flag is
reset.

OVERFLOW

The PARITY/OVERFLOW flag is set when an overflow occurs during an arithmetic
instruction that uses signed numbers. This can only happen when adding operands with
like signs or subtracting operands with unlike signs. e.g., if the INC D instruction
is encountered when D contains 7FH, then the PARITY/OVERFLOW flag is set

Instructions that place the PARITY/OVERFLOW flag into an indeterminate state:

IND INDR INI INIR OTD OTDR OTI
OTIR

Instructions that reset the PARITY/OVERFLOW flag:
LDDR LDIR

Other instructions that affect the PARITY/OVERFLOW flag:
EX AF,AF AND OR XOR NEG DAA RL
RLC RR RRC SLA SLL SRA SRL
RLD RRD BIT IN r,(C) POP AF LDD LDI
CPD CPDR CPI CPIR

Arithmetic instructions that do not change the PARITY/OVERFLOW flag:
ADD HL,Ir ADD ir,rr ADD ir,ir DEC 1r DEC ir INC rr INC ir

Page 6-3

Z80 Flags

ADD/SUBTRACT flag: N

The ADD/SUBTRACT flag is reset for all add instructions and is set for all subtract

instructions. The ADD/SUBTRACT flag is tested only with the DAA instruction to
correct the result after a BCD add or subtract instruction.

Instructions that place the ADD/SUBTRACT flag into an indeterminate state:

IND INDR INI INIR OTDR OTIR OUTD
OUTI

Instructions that reset the ADD/SUBTRACT flag:
LD A,sr ADC ADD AND INC OR XOR
CCF RLA RLCA RRA RRCA RL RLC
RR RRC SLA SLL SRA SRL RLD
RRD BIT IN r,(C) LDD LDDR LDI LDIR

Other instructions that affect the ADD/SUBTRACT flag:
EX AF,AF POP AF

Instructions that set the ADD/SUBTRACT flag:

DEC CP SBC SUB SCF CPL NEG
CPD CPDR CPI CPIR
CARRY flag: C
Mnemonic: CARRY flag set = C e.g., branch if carry (C=1): Jp C,mn
CARRY flag reset = NC e.g., branch if no carry (C=0): JP NC, mn

The carry flag is set if the execution of an add instruction produces a carry from the
most significant bit. The CARRY flag also is set if the execution of a subtract
instruction produces a borrow into the most significant bit.

Instructions that place the CARRY flag into an indeterminate state:

IND INDR INI INIR OTDR OTIR OuUTD
OuTI

Instructions that reset the CARRY flag:
AND OR XOR

Other instructions that affect the CARRY flag:
EX AFAF CCF NEG DAA RLA RLCA RRA
RRCA RL RLC RR RRC SLA SLL
SRA SRL POP AF

Arithmetic instructions that do not change the CARRY flag:
DEC INC

Instructions that set the CARRY flag:
SCF

Page 6-4

Z80 Flags

Flag summary:

. ® .
The table below reflects how the flags are affected by wvarious Z80" instructions. The
following legend is used:

? = flag is indeterminate

0 = flag is reset

1 = flag is affected in accordance with the previous deliberation

e = flag is not affected

1l = flag is set

flag S Z H P/V N C
8-bit:
ADC ADD ; ; ; ! 0 !
AND 1 1 1 1 0 0
BIT 1 b’ 1 b’ 0 .
CCF . . C . 0 c’
CP NEG SBC SUB 0 0 0 0 1 1
CPL . . 1 . 1 .
DAA ! ! ! ! b !
DEC ; ; t ! 1 .
INC ; ; ! ! 0 .
IND INT OUTD OUTI ? 7 ? ? ? ?
INDR INIR OTDR OTIR 0 1 ? ? ? ?
IN r, (C) 1 0 0 0 0 .
LD A,Sr 1 1 0 IFF, 0 .
OR XOR 1 1 0 1 0 0
RLA RLCA RRA RRCA . . 0 . 0 7
RL RLC RR RRC 1 1 0 1 0 1
SLA SLL SRA
RLD RRD ; ; 0 ! 0 .
SCF . . 0 ° 0 1
SRL 0 t 0 ! 0 t
16-bit:

ADC ; ; ; ! 0 !
ADD . . 1 . 0 1
CPD CPDR CPI CPIR t t t t 1 .
LDD LDI . . 0 1 0 .
LDDR LDIR . . 0 0 0 .
SBC t t t t 1 t

Page 6-5

Z80 Execution Times

The 280® executes each instruction in one to six machine cycles (M cycles). Each 280®
machine cycle takes from three to six clock periods (T-states). e.g., LD A,23H
requires two machine cycles: the first machine cycle, M1, requires four clock periods
(T-states) and the second machine cycle requires three clock periods; therefore, this
instruction requires 1.72625 puS (7 T-states) to execute in a machine with a CPU clock
speed of 4.05504 MHz (standard TRS-80° Model 4 with no added wait states).

The table below is the execution time for specific T-States for various CPU speeds.

280® speed in MHz

6.75840| 6.33600| 6.08256| 5.06880| 4.05504| 3.54817| 2.66113| 2.02752| 1.77408

[20.2752/3] [12.672/2] [20.2752/3.33]1 [20.2752/4] [20.2752/5] [10.6445/3] [10.6445/4] [20.2752/10] [10.64456/6
stgges Execution time in microseconds
1 0.14796| 0.15783| 0.16440| 0.19729| 0.24661| 0.28184| 0.37578| 0.49321| 0.56367
2 0.29593| 0.31566(| 0.32881| 0.39457| 0.49321(0.56367| 0.75156| 0.98643| 1.12734
3 0.44389| 0.47348| 0.49321| 0.59186| 0.73982(0.84551| 1.12734| 1.47964| 1.69101
4 0.59186| 0.63131| 0.65762| 0.78914| 0.98643| 1.12734| 1.50312| 1.97285| 2.25469
5 0.73982| 0.78914(0.82202| 0.98643| 1.23303| 1.40918| 1.87890| 2.46607| 2.81836
6 0.88778| 0.94697| 0.98643| 1.18371| 1.47964| 1.69101| 2.25469| 2.95928| 3.38203
7 1.03575| 1.10480(| 1.15083| 1.38100| 1.72625(1.97285| 2.63047| 3.45249| 3.94570
8 1.18371| 1.26263| 1.31524| 1.57828| 1.97285(2.25469| 3.00625| 3.94571| 4.50937
9 1.33168| 1.42045(| 1.47964| 1.77557| 2.21946| 2.53652| 3.38203| 4.43892| 5.07304
10 1.47964| 1.57828| 1.64404| 1.97285| 2.46607| 2.81836| 3.75781| 4.93213| 5.63671
11 1.62760| 1.73611| 1.80845| 2.17014| 2.71267| 3.10019| 4.13359| 5.42535| 6.20039
12 1.77557| 1.89394(1.97285| 2.36742| 2.95928(3.38203| 4.50937| 5.91856| 6.76406
13 1.92353| 2.05177| 2.13726| 2.56471| 3.20589| 3.66386| 4.88515| 6.41177| 7.32773

14 2.07150(2.20960| 2.30166| 2.76199(3.45249| 3.94570| 5.26093| 6.90499| 7.89140

15 2.21946(2.36742) 2.46607| 2.95928| 3.69910| 4.22754| 5.63671| 7.39820| 8.45507

16 2.36742(2.52525| 2.63047| 3.15657| 3.94571| 4.50937| 6.01249| 7.89141| 9.01874

17 2.51539| 2.68308| 2.79488| 3.35385| 4.19231| 4.79121| 6.38828| 8.38463| 9.58241

18 2.66335(2.84091| 2.95928| 3.55114(4.43892| 5.07304| 6.76406| 8.87784|10.14608

19 2.81132(2.99874| 3.12368| 3.74842| 4.68553| 5.35488| 7.13984| 9.37105|10.70976

20 2.95928(3.15657| 3.28809| 3.94571| 4.93213| 5.63671| 7.51562| 9.86427|11.27343

21 3.10724| 3.31439| 3.45249| 4.14299| 5.17874| 5.91855| 7.89140(10.35748|11.83710

22 3.25521| 3.47222| 3.61690| 4.34028| 5.42535| 6.20039| 8.26718(10.85069(12.40077

23 3.40317| 3.63005(3.78130| 4.53756| 5.67195| 6.48222| 8.64296(11.34391|12.96444

Page 6-6

Z80 Instructions by Mnemonic

ADC A,A 8F AND C Al

ADC A,B 88 AND D A2

ADC A,C 89 AND E A3

ADC A,D 8A AND H Al

ADC A,E 8B AND HX DDA4

ADC A, H 8C AND HY FDA4

ADC A, HX DD8C AND L A5

ADC A, HY FD8C AND LX DDAS5

ADC A, L 8D AND LY FDA5

ADC A,LX DD8D AND n E648

ADC A, LY FD8D AND (HL) A6

ADC A,n CE48 AND (IX+d) DDAG1E
ADC A, (HL) 8E AND (IY+4) FDAG1E
ADC A, (IX+d) DDSELE BIT 0,A CB47

ADC A, (IY+d) FDSELE BIT 0,B CB40

ADC HL, BC ED4A BIT 0,C CB41

ADC HL, DE ED5A BIT 0,D CB42

ADC HL, HL ED6A BIT 0,E CB43

ADC HL, SP ED7A BIT 0,H CB44

ADD A,A 87 BIT 0,L CB45

ADD A,B 80 BIT 0, (HL) CB46

ADD A,C 81 BIT 0, (IX+d) DDCB1E46
ADD A,D 82 BIT 0, (IY+d) FDCB1E46
ADD A,E 83 BIT 1,A CBAF
ADD A,H 84 BIT 1,B CB48

ADD A, HX DD84 BIT 1,C CB49

ADD A, HY FD84 BIT 1,D CB4A
ADD A, L 85 BIT 1,E CB4B
ADD A, LX DD85 BIT 1,H CBAC

ADD A, LY FD85 BIT 1,L CB4D
ADD A,n C648 BIT 1, (HL) CB4E

ADD A, (HL) 86 BIT 1, (IX+d) DDCB1EAE
ADD A, (IX+d) DD861E BIT 1, (IY+d) FDCB1E4E
ADD A, (IY+d) FD861E BIT 2,A CB57

ADD HL, BC 09 BIT 2,B CB50

ADD HL, DE 19 BIT 2,C CB51

ADD HL, HL 29 BIT 2,D CB52

ADD HL, SP 39 BIT 2,E CB53

ADD IX,BC DDO09 BIT 2,8 CB54

ADD IX,DE DD19 BIT 2,L CB55

ADD IX, IX DD29 BIT 2, (HL) CB56

ADD IX,SP DD39 BIT 2, (IX+d) DDCB1E56
ADD 1Y, BC FDOO BIT 2, (IY+d) FDCB1E56
ADD 1Y, DE FD19 BIT 3,A CB5SF
ADD IY,IY FD29 BIT 3,B CB58

ADD IY,SP FD39 BIT 3,C CB59

AND A A7 BIT 3,D CB5A
AND B A0 BIT 3,E CB5B

~

Page 6-7

Z80 Instructions by Mnemonic

BIT 3,H CB5C CALL NC, mn D4A00B
BIT 3,L CB5D CALL NZ,mn C4A00B
BIT 3, (HL) CB5E CALL P, mn F4A00B
BIT 3, (IX+d) DDCB1ESE CALL PE, mn ECAQ0B
BIT 3, (IY+d) FDCB1ESE CALL PO, mn E4A00B
BIT 4,n CB67 CALL Z,mn CCAQOB
BIT 4,B CB60 CCF 3F

BIT 4,C CB61 CP A BF

BIT 4,D CB62 CP B B8

BIT 4,E CB63 CP C B9

BIT 4,H CB64 CP D BA

BIT 4,L CB65 CP E BB

BIT 4, (HL) CB66 CP H BC

BIT 4, (IX+d) DDCB1E66 CP HX DDBC
BIT 4, (IY+d) FDCB1E66 CP HY FDBC
BIT 5,A CB6F CP L BD

BIT 5,B CB68 CP LX DDBD
BIT 5,C CB69 CP LY FDBD
BIT 5,D CB6A CP n FE48
BIT 5,E CB6B CP (HL) BE

BIT 5,H CB6C CP (IX+d) DDBE1E
BIT 5,L CB6D CP (IY+d) FDBE1E
BIT 5, (HL) CB6E CPD EDA9
BIT 5, (IX+d) DDCB1EGE CPDR EDB9
BIT 5, (IY+d) FDCB1E6E CPI EDA1
BIT 6,A CB77 CPIR EDB1
BIT 6,B CB70 CPL 2F

BIT 6,C CB71 DAA 27

BIT 6,D CB72 DEC A 3D

BIT 6,E CB73 DEC B 05

BIT 6,H CB74 DEC BC 0B

BIT 6,L CB75 DEC C 0D

BIT 6, (HL) CB76 DEC D 15

BIT 6, (IX+d) DDCB1E76 DEC DE 1B

BIT 6, (IY+d) FDCB1E76 DEC E 1D

BIT 7,A CB7F DEC H 25

BIT 7,B CB78 DEC HL 2B

BIT 7,C CB79 DEC HX DD25
BIT 7,D CB7A DEC HY FD25
BIT 7,E CB7B DEC IX DD2B
BIT 7,H CB7C DEC TY FD2B
BIT 7,L CB7D DEC L 2D

BIT 7, (HL) CB7E DEC LX DD2D
BIT 7, (IX+d) DDCB1E7E DEC LY FD2D
BIT 7, (IY+d) FDCB1ETE DEC SP 3B
CALL C,mn DCAOOB DEC (HL) 35
CALL M, mn FCAO0OB DEC (IX+d) DD351FE
CALL mn CDAOOB DEC (IY+d) FD351FE

Page 6-8

Z80 Instructions by Mnemonic

DI F3 Jp mn
DJNZ e 101C Jp NC, mn
EI FB JPp NZ,mn
EX AF,AF' 08 JP P, mn
EX DE, HL EB JP PE, mn
EX (SP) , HL E3 Jp PO, mn
EX (SP), IX DDE3 JP Z,mn
EX (SP),IY FDE3 JPp (HL)
EXX D9 JPp (IX)
HALT 76 JP (IY)
IM 0 ED46 JR C,e
M 1 ED56 JR e

M 2 EDSE JR NC, e
IN A, (C) ED78 JR NZ, e
IN A, (n) DB48 JR Z,e
IN B, (C) ED40 LD A,A
IN c, (C) ED48 1D A,B
IN D, (C) ED50 LD A,C
IN E, (C) ED58 LD A,D
IN H, (C) ED60 LD AE
IN L, (C) ED68 1D A,H
IN (HL), (C) ED70 LD A, HX
INC A 3C LD A,HY
INC B 04 LD A, T
INC BC 03 LD A,L
INC C 0ocC LD A,LX
INC D 14 LD A, LY
INC DE 13 LD A,n
INC E 1C LD A,R
INC H 24 LD A, (BC)
INC HL 23 LD A, (DE)
INC HX DD24 LD A, (HL)
INC HY FD24 LD A, (IX+d)
INC IX DD23 LD A, (IY+d)
INC 1Y FD23 LD A, (mn)
INC L 2C LD B,A
INC LX DD2C LD B,B
INC LY FD2C LD B,C
INC SP 33 LD B,D
INC (HL) 34 LD B,E
INC (IX+d) DD341E LD B,H
INC (IY+d) FD341E LD B, HX
IND EDAA LD B, HY
INDR EDBA LD B,L
INI EDA2 LD B, LX
INIR EDB2 LD B,LY
JP C,mn DAAOOB LD B,n
JPp M, mn FAAOOB LD B, (HL)

C3A00B
D2A00B
C2A00B
F2A00B
EAAQOOB
E2AQ00B
CAAQOOB
E9
DDE9
FDEOS
38DE
1810
30EC
2006
28F8
TF

78

79

TA

7B

7C
DD7C
FD7C
ED57
7D
DD7D
FD7D
3E48
EDSF
0A

1A

TE
DD7E1E
FD7ELE
3AA00B
47

40

41

42

43

44
DD44
FD44
45
DD45
FD45
0648
46

Page 6-9

Z80 Instructions by Mnemonic

LD B, (IX+d) DD461FE LD E, (HL) 5E

LD B, (IY+d) FD461FE LD E, (IX+d) DD5SELE
LD BC, mn 01A00B LD E, (IY+d) FD5SELE
LD BC, (mn) ED4BAOOB LD H,A 67

LD c,A 4F LD H,B 60

LD c,B 48 LD H,C 61

LD c,C 49 LD H,D 62

LD c,D an LD H,E 63

LD C,E 4B LD H,H 64

LD c,H 4c LD H,L 65

LD C, X DD4C LD H,n 2648
LD c,Hy FD4C LD H, (HL) 66

LD c,L 4D LD H, (IX+d) DD661FE
LD c,LX DD4D LD H, (IY+d) FD661E
LD c,LY FD4D LD HL, mn 21A00B
LD c,n 0E48 LD HL, (mn) 2AA00B
LD C, (HL) 4E LD HX, A DD67
LD C, (IX+d) DD4E1E LD HX, B DD60
LD C, (IY+d) FDAELE LD HX, C DD61
LD D,A 57 LD HX, D DD62
LD D,B 50 LD HX, E DD63
LD D,C 51 LD HX, HX DD64
LD D,D 52 LD HX, LX DD65
LD D,E 53 LD HX,n DD2648
LD D,H 54 LD HY, A FD67
LD D, HX DD54 LD HY,B FD60
LD D, HY FD54 LD HY,C FD61
LD D, L 55 LD HY,D FD62
LD D, LX DD55 LD HY,E FD63
LD D, LY FD55 LD HY, HY FD64
LD D,n 1648 LD HY,LY FD65
LD D, (HL) 56 LD HY,n FD2648
LD D, (IX+d) DD561FE LD I,A ED47
LD D, (IY+d) FD561FE LD IX, mn DD21A00B
LD DE, mn 11A00B LD IX, (mn) DD2AA00B
LD DE, (mn) ED5BA0OOB LD IY,mn FD21A00B
LD E,A 5F LD IY, (mn) FD2AA00B
LD E,B 58 LD L,A 6F

LD E,C 59 LD L,B 68

LD E,D 5A LD L,C 69

LD E,E 5B LD L,D 6A

LD E,H 5C LD L,E 6B

LD E, HX DD5C LD L,H 6C

LD E,HY FD5C LD L, L 6D

LD E,L 5D LD L,n 2E48
LD E, LX DD5D LD L, (HL) 6E

LD E,LY FD5D LD L, (IX+d) DD6ELE
LD E,n 1E48 LD L, (IY+d) FD6ELE

Page 6-10

N~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~ —~

S HEE@DMMUOQW®BS BT HOgQWW P

Z80 Instructions by Mnemonic

DD6F LD (mn) , A 32A00B
DD68 LD (mn) , BC ED43A00B
DD69 LD (mn) , DE ED53A00B
DD6A LD (mn) , HL 22A00B
DD6B LD (mn) , IX DD22A00B
DD6C LD (mn) , IY FD22A00B
DD6D LD (mn) , SP ED73A00B
DD2E48 LDD EDAS
FD6F LDDR EDBS8
FD68 LDI EDAO
FD69 LDIR EDBO
FD6A NEG ED44
FD6B NOP 00

FD6C OR A B7

FD6D OR B BO
FD2E48 OR C Bl

ED4F OR D B2

F9 OR E B3

DDF9 OR H B4

FDF9 OR HX DDB4
31A00B OR HY FDB4
ED7BAQOOB OR L B5

02 OR LX DDB5

12 OR LY FDB5

77 OR n F648

70 OR (HL) B6

71 OR (IX+d) DDB61E
72 OR (IY+d) FDB61E
73 OTDR EDBB

74 OTIR EDB3

75 OuT (C),A ED79
3648 ouT (C),B ED41
DD771E ouT (c),C ED49
DD701E OuUT (C),D ED51
DD711E OuT (C),E ED59
DD721E ouT (C),H ED61
DD731E ouT (C),L ED69
DD741E OuUT (C), (HL) ED71
DD751E OuT (n) ,A D348
DD361E48 OUTD EDAB
FD771E OUTI EDA3
FD701E POP AF Fl
FD711E POP BC Cl
FD721E POP DE D1
FD731E POP HL El
FD741E POP IX DDE1
FD751E POP IY FDE1
FD361E48 PUSH AF F5

Page 6-11

PUSH BC
PUSH DE
PUSH HL
PUSH IX
PUSH IY
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

4

4

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

L+~~~ PRPPRPPRPRPRP PP PP OOOOCOOOO OO0 000 0O 0oO oo Ooooooo
~

~

Page 6-12

~
—
—

oD DD HEMHOOUOUOOQOQQWWWw Y R Y ~ ~~FHHPHDDDHMEHMOUOOQQQmwow oo
-

Z80 Instructions by Mnemonic

C5

D5

E5

DDES
FDES
CB87
DDCB1E87
FDCB1ES87
CB80
DDCB1ES80
FDCB1ES80
CB81
DDCB1ES81
FDCB1ES81
CB82
DDCB1ES82
FDCB1E82
CB83
DDCB1ES83
FDCB1ES83
CB84
DDCB1E84
FDCB1E84
CB85
DDCB1E85
FDCB1ES85
CB86
DDCB1E86
FDCB1E86
CB8F
DDCB1ES8F
FDCB1ESF
CB88
DDCB1ES88
FDCB1ES88
CB89
DDCB1E89
FDCB1ES89
CB8A
DDCB1E8A
FDCB1ES8A
CB8B
DDCB1ES8B
FDCB1ES8B
CB8C
DDCB1ES8C
FDCB1ES8C
CB8D

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

, (IX+d)
, (IY+d)
L)
IX+d)
IY+d)

14
4
14
4
4

4

, (IX+d)
, (IY+d)

4
4

, (IX+d)
, (IY+d)

4
4

4

, (IX+d)
, (IY+d)

4
4

4

, (IX+d)
, (IY+d)

4
4

, (IX+d)
, (IY+d)

4
4

, (IX+d)
, (IY+d)

1,L
1,L

1, (H
1, (
1, (
2,A

2,A

2,A

2,B

2,B

2,B

2,C

2,C

2,C

2,D

2,D

2,D

2,E

2,E

2,E

2,H

2,H

2,H

2,L

2,L, (IX+d)
2,L, (IY+d)
2, (HL)
2, (IX+d)
2, (IY+d)
3,A
3,A
3,A
3,B
3,B
3,B
3,C
3,C
3,C
3,D
3,D
3,D
3,E
3,E
3,E
3,H
3,H
3,H
3,L

4

4

4

, (IX+d)
, (IY+d)

4
4

, (IX+d)
, (IY+d)

4
4

4

, (IX+d)
, (IY+d)

14
4

4

, (IX+d)
, (IY+d)

4
4

, (IX+d)
, (IY+d)

4
4

, (IX+d)
, (IY+d)

4

4

4

DDCB1ES8D
FDCB1ES8D
CB8E
DDCB1ESE
FDCB1ESE
CB97
DDCB1E97
FDCB1E97
CB90
DDCB1E90
FDCB1E90
CB91
DDCB1ES1
FDCB1E91
CB92
DDCB1E92
FDCB1ES2
CB93
DDCB1E93
FDCB1E93
CB94
DDCB1E94
FDCB1E94
CB95
DDCB1E95
FDCB1E95
CB96
DDCB1E96
FDCB1E96
CBOF
DDCB1ESF
FDCB1ESF
CB98
DDCB1E98
FDCB1E98
CB99
DDCB1E99
FDCB1E99
CB9A
DDCB1ESA
FDCB1ESA
CB9B
DDCB1ESB
FDCB1ESB
CB9C
DDCB1ESC
FDCB1ESC
CB9D

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

, (IX+d)
, (IY+d)
HL)
IX+d)
IY+d)

4

4

4

4

, (IX+d)
, (IY+d)

4

4

, (IX+d)
, (IY+d)

4

4

, (IX+d)
, (IY+d)

4

4

, (IX+d)
, (IY+d)

4

4

, (IX+d)
, (IY+d)

4

4

, (IX+d)
, (IY+d)

14

4

, (IX+d)
, (IY+d)
HL)
IX+d)
IY+d)

4

4

4

4

, (IX+d)
, (IY+d)

4

4

, (IX+d)
, (IY+d)

4

4

, (IX+d)
, (IY+d)

4

4

, (IX+d)
, (IY+d)

4

4

, (IX+d)
, (IY+d)

14

4

, (IX+d)
, (IY+d)

4

SIS S G S S G B G B B B G B B G G G G B @ B B N N N N N S N N N N N N N N N U U SV I SV OV
oD DD HEHMMEHMOOOUOOQOQQWDWWE R Y ~ ~~HFHHPPDDDHMEHEMOUOUOQQOQWww R PR~ ~~H -

Z80 Instructions by Mnemonic

DDCB1ESD
FDCB1E9D
CBIE
DDCB1ESE
FDCB1ESE
CBA7
DDCB1EA7
FDCB1EA7
CBAO
DDCB1EAO
FDCB1EAO
CBAl
DDCB1EAL
FDCB1EAlL
CBA2
DDCB1EA2
FDCB1EA2
CBA3
DDCB1EA3
FDCB1EA3
CBA4
DDCB1EA4
FDCB1EA4
CBAS
DDCB1EAS
FDCB1EAS
CBAG6
DDCB1EA6
FDCB1EAG6
CBAF
DDCB1EAF
FDCB1EAF
CBAS
DDCB1EAS
FDCB1EAS
CBA9
DDCB1EA9
FDCB1EA9
CBAA
DDCB1EAA
FDCB1EAA
CBAB
DDCB1EAB
FDCB1EAB
CBAC
DDCB1EAC
FDCB1EAC
CBAD

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

DDCB1EAD
FDCB1EAD
CBAE
DDCB1EAE
FDCB1EAE
CBB7
DDCB1EB7
FDCB1EB7
CBBO
DDCB1EBO
FDCB1EBO
CBB1
DDCB1EB1
FDCB1EB1
CBB2
DDCB1EB2
FDCB1EB2
CBB3
DDCB1EB3
FDCB1EB3
CBB4
DDCB1EB4
FDCB1EB4
CBBbS
DDCB1EBS
FDCB1EBS
CBB6
DDCB1EB6
FDCB1EBG6
CBBF
DDCB1EBF
FDCB1EBF
CBB8
DDCB1EBS
FDCB1EBS
CBB9
DDCB1EB9
FDCB1EB9
CBBA
DDCB1EBA
FDCB1EBA
CBBB
DDCB1EBB
FDCB1EBB
CBBC
DDCB1EBC
FDCB1EBC
CBBD

Page 6-13

RES 7,L, (IX+d)
RES 7,L, (IY+d)
RES 7, (HL)
RES 7, (IX+d)
RES 7, (IY+d)
RET C

RET M

RET NC

RET NZ

RET P

RET PE

RET PO

RET 4

RET

RETI

RETN

RL A

RL A, (IX+d)
RL A, (IY+d)
RL B

RL B, (IX+d)
RL B, (IY+d)
RL C

RL C, (IX+d)
RL C, (IY+d)
RL D

RL D, (IX+d)
RL D, (IY+d)
RL E

RL E, (IX+d)
RL E, (IY+d)
RL H

RL H, (IX+d)
RL H, (IY+d)
RL L

RL L, (IX+d)
RL L, (IY+d)
RL (HL)

RL (IX+d)
RL (IY+d)
RLA

RLC A

RLC A, (IX+d)
RLC A, (IY+d)
RLC B

RLC B, (IX+d)
RLC B, (IY+d)
RLC C

Page 6-14

Z80 Instructions by Mnemonic

DDCB1EBD
FDCB1EBD
CBBE
DDCB1EBE
FDCB1EBE
D8

F8

DO

Cco

FO

E8

EO

Cc8

C9

ED4D
ED45
CB17
DDCB1E17
FDCB1E17
CB10
DDCB1E10
FDCB1E10
CB11
DDCB1E11l
FDCB1E1l1l
CB12
DDCB1E12
FDCB1E12
CB13
DDCB1E13
FDCB1E13
CB14
DDCB1E14
FDCB1E14
CB15
DDCB1E15
FDCB1E1S5
CB16
DDCB1E16
FDCB1E16
17

CBO7
DDCB1EQ07
FDCB1EO7
CB0O
DDCB1EOO
FDCB1EOO
CBO1

RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLCA
RLD
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RR
RRA
RRC
RRC
RRC
RRC

DDCB1EO1
FDCB1EO1
CBO2
DDCB1EQO2
FDCB1EO2
CB03
DDCB1EO03
FDCB1EO3
CB04
DDCB1E04
FDCB1EO4
CBO5
DDCB1EO05
FDCB1EOS
CB06
DDCB1E06
FDCB1EO6
07

ED6F
CB1F
DDCBI1ELF
FDCBLE1F
CB18
DDCB1E18
FDCB1E18
CB19
DDCB1E19
FDCB1E19
CB1A
DDCBlEI1A
FDCB1E1A
CB1B
DDCB1E1B
FDCB1E1B
CB1C
DDCB1EIC
FDCB1EIC
CB1D
DDCB1E1D
FDCB1E1D
CB1E
DDCB1E1E
FDCB1E1E
1F

CBOF
DDCB1EOF
FDCB1EOF
CBO8

RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRCA
RRD
RST
RST
RST
RST
RST
RST
RST
RST
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC

10H
18H
20H
28H
30H
38H

Z80 Instructions by Mnemonic

DDCB1EOS8
FDCB1EOS8
CB09
DDCB1EO09
FDCB1EO9
CBOA
DDCB1EOA
FDCB1EOA
CBOB
DDCB1EOB
FDCB1EOB
CBOC
DDCB1EOC
FDCB1EOC
CBOD
DDCB1EOD
FDCB1EOD
CBOE
DDCB1EOE
FDCB1EOE
0F

ED67

C7

D7

DF

E7

EF

E7

FF

CF

9F

98

99

9A

9B

9C

DDOC
FDOC

9D

DDSD
FDI9D
DE48

9E
DDSE1E
FDY9E1E
ED42
ED52
ED62

SBC
SCF
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

HL, SP

~ PP DD I@DMEHMEHEHMOOUOOQOQOQE©TWE PP~~~ DD DHEHMEHEOOUOOQOQQQDDm P P

T~

, (IX+d)
, (IY+d)

~

~

~

~

, (IX+d)
, (IY+d)

~

~

, (IX+d)
, (IY+d)

~

~

~

, (IX+d)
, (IY+d)

~

~

~

, (IX+d)
, (IY+d)

~

~

~

, (IX+d)
, (IY+d)

~

~

~

, (IX+d)
, (IY+d)

4

4

s
=

~

IX+d)
IY+d)

~

, (IX+d)
, (IY+d)

~

~

~

, (IX+d)
, (IY+d)

~

~

~

, (IX+d)
, (IY+d)

~

~

~

, (IX+d)
, (IY+d)

~

~

~

, (IX+d)
, (IY+d)

~

~

~

, (IX+d)
, (IY+d)

~

~

~

IX+d)
IY+d)

~

~
~

L+, PrPPrPPRPPRPRPPRPRPRP P OOOOOOOO OO0 00O 0o oo OoOOoOOoOOoOoooo
~

~

H -~
-

ED72

37

CBC7
DDCB1EC7
FDCB1EC7
CBCO
DDCB1ECO
FDCB1ECO
CBC1
DDCB1EC1
FDCB1EC1
CBC2
DDCB1EC2
FDCB1EC2
CBC3
DDCB1EC3
FDCB1EC3
CBC4
DDCB1EC4
FDCB1EC4
CBCS
DDCB1ECS
FDCB1ECS5
CBC6
DDCB1EC6
FDCB1EC6
CBCF
DDCB1ECF
FDCB1ECF
CBCS8
DDCB1ECS
FDCB1ECS
CBC9
DDCB1ECY
FDCB1ECY
CBCA
DDCB1ECA
FDCB1ECA
CBCB
DDCB1ECB
FDCB1ECB
CBCC
DDCB1ECC
FDCB1ECC
CBCD
DDCB1ECD
FDCB1ECD
CBCE

Page 6-15

Z80 Instructions by Mnemonic

SET 1, (IX+d) DDCB1ECE SET 3, (IX+d) DDCB1EDE
SET 1, (IY+d) FDCB1ECE SET 3, (IY+d) FDCB1EDE
SET 2,A CBD7 SET 4,n CBE7
SET 2,A, (IX+d) DDCBLED7 SET 4,A, (IX+d) DDCB1EE7
SET 2,A, (IY+d) FDCB1ED7 SET 4,1, (IY+d) FDCBlEET7
SET 2,B CBDO SET 4,B CBEO
SET 2,B, (IX+d) DDCB1EDO SET 4,B, (IX+d) DDCBLEEO
SET 2,B, (IY+d) FDCB1EDO SET 4,B, (IY+d) FDCBLEEO
SET 2,C CBD1 SET 4,C CBE1
SET 2,C, (IX+d) DDCB1ED1 SET 4,C, (IX+d) DDCB1EE1
SET 2,C, (IY+d) FDCB1ED1 SET 4,C, (IY+d) FDCB1EEL
SET 2,D CBD2 SET 4,D CBE2
SET 2,D, (IX+d) DDCB1ED2 SET 4,D, (IX+d) DDCB1EE2
SET 2,D, (IY+d) FDCB1ED2 SET 4,D, (IY+d) FDCBLEE2
SET 2,E CBD3 SET 4,E CBE3
SET 2,E, (Ix+d) DDCB1ED3 SET 4,E, (IX+d) DDCB1EE3
SET 2,E, (IY+d) FDCB1ED3 SET 4,E, (IY+d) FDCB1EE3
SET 2,8 CBD4 SET 4,H CBE4
SET 2,H, (IX+d) DDCBlED4 SET 4,H, (IX+d) DDCB1EE4
SET 2,H, (IY+d) FDCB1ED4 SET 4,H, (IY+d) FDCBlEE4
SET 2,L CBD5 SET 4,L CBE5
SET 2,L, (IX+d) DDCB1ED5 SET 4,1, (IX+d) DDCB1EES5
SET 2,L, (IY+d) FDCB1ED5 SET 4,1, (IY+d) FDCBlEES5
SET 2, (HL) CBD6 SET 4, (HL) CBE6
SET 2, (IX+d) DDCB1ED6 SET 4, (IX+d) DDCB1EEG6
SET 2, (IY+d) FDCB1ED6 SET 4, (IY+d) FDCB1EEG
SET 3,A CBDF SET 5,A CBEF
SET 3,2, (IX+d) DDCBlEDF SET 5,A, (IX+d) DDCBlEEF
SET 3,2, (IY+d) FDCBlEDF SET 5,A, (IY+d) FDCBlEEF
SET 3,B CBDS SET 5,B CBES
SET 3,B, (IX+d) DDCB1EDS SET 5,B, (IX+d) DDCB1EES8
SET 3,B, (IY+d) FDCBLEDS SET 5,B, (IY+d) FDCB1EES8
SET 3,C CBD9 SET 5,C CBE9
SET 3,C, (IX+d) DDCB1ED9 SET 5,C, (IX+d) DDCB1EE9
SET 3,C, (IY+d) FDCB1EDO SET 5,C, (IY+d) FDCB1EE9
SET 3,D CBDA SET 5,D CBEA
SET 3,D, (IX+d) DDCB1EDA SET 5,D, (IX+d) DDCB1EEA
SET 3,D, (IY+d) FDCB1EDA SET 5,D, (IY+d) FDCB1EEA
SET 3,E CBDB SET 5,E CBEB
SET 3,E, (IX+d) DDCB1EDB SET 5,E, (IX+d) DDCB1EEB
SET 3,E, (IY+d) FDCB1EDB SET 5,E, (IY+d) FDCB1EEB
SET 3,H CBDC SET 5,H CBEC
SET 3,H, (IX+d) DDCB1EDC SET 5,H, (IX+d) DDCB1EEC
SET 3,H, (IY+d) FDCB1EDC SET 5,H, (IY+d) FDCB1EEC
SET 3,L CBDD SET 5,L CBED
SET 3,L, (IX+d) DDCB1EDD SET 5,L, (IX+d) DDCB1EED
SET 3,L, (IY+d) FDCBLEDD SET 5,L, (IY+d) FDCB1EED
SET 3, (HL) CBDE SET 5, (HL) CBEE

Page 6-16

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

Z80 Instructions by Mnemonic

DDCB1EEE
FDCB1EEE
CBF7
DDCB1EF7
FDCB1EF7
CBFO
DDCB1EFO
FDCB1EFO
CBF1
DDCBI1EF1
FDCB1EF1
CBF2
DDCB1EF2
FDCB1EF2
CBF3
DDCB1EF3
FDCB1EF3
CBF4
DDCB1EF4
FDCB1EF4
CBFS
DDCB1EF5
FDCB1EF5
CBF6
DDCB1EF6
FDCB1EF6
CBFF
DDCB1EFF
FDCB1EFF
CBF8
DDCB1EFS8
FDCB1EFS8
CBF9
DDCB1EF9
FDCB1EF9
CBFA
DDCB1EFA
FDCB1EFA
CBEB
DDCB1EFB
FDCB1EFB
CBFC
DDCB1EFC
FDCB1EFC
CBFD
DDCB1EFD
FDCB1EFD
CBFE

SET
SET
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL
SLL

DDCB1EFE
FDCB1EFE
CB27
DDCB1E27
FDCB1E27
CB20
DDCB1E20
FDCB1E20
CB21
DDCB1E21
FDCB1E21
CB22
DDCB1E22
FDCB1E22
CB23
DDCB1E23
FDCB1E23
CB24
DDCB1E24
FDCB1E24
CB25
DDCB1E25
FDCB1E25
CB26
DDCB1E26
FDCB1E26
CB37
DDCB1E37
FDCB1E37
CB30
DDCB1E30
FDCB1E30
CB31
DDCB1E31
FDCB1E31
CB32
DDCB1E32
FDCB1E32
CB33
DDCB1E33
FDCB1E33
CB34
DDCB1E34
FDCB1E34
CB35
DDCB1E35
FDCB1E35
CB36

Page 6-17

SLL (IX+d)
SLL (IY+d)
SRA A

SRA A, (IX+d)
SRA A, (IY+d)
SRA B

SRA B, (IX+d)
SRA B, (IY+d)
SRA C

SRA C, (IX+d)
SRA C, (IY+d)
SRA D

SRA D, (IX+d)
SRA D, (IY+d)
SRA E

SRA E, (IX+d)
SRA E, (IY+d)
SRA H

SRA H, (IX+d)
SRA H, (IY+d)
SRA L

SRA L, (IX+d)
SRA L, (IY+d)
SRA (HL)

SRA (IX+d)
SRA (IY+d)
SRL A

SRL A, (IX+d)
SRL A, (IY+d)
SRL B

SRL B, (IX+d)
SRL B, (IY+d)
SRL C

SRL C, (IX+d)
SRL C, (IY+d)
SRL D

SRL D, (IX+d)
SRL D, (IY+d)
SRL E

SRL E, (IX+d)
SRL E, (IY+d)
SRL H

SRL H, (IX+d)
SRL H, (IY+d)
SRL L

SRL L, (IX+d)
SRL L, (IY+d)
SRL (HL)

Page 6-18

Z80 Instructions by Mnemonic

DDCB1E36
FDCB1E36
CB2F
DDCB1E2F
FDCB1E2F
CB28
DDCB1E28
FDCB1E28
CB29
DDCB1E29
FDCB1E29
CB2A
DDCB1E2A
FDCB1E2A
CB2B
DDCB1E2B
FDCB1E2B
CB2C
DDCB1E2C
FDCB1E2C
CB2D
DDCB1E2D
FDCB1E2D
CB2E
DDCB1E2E
FDCB1lE2E
CB3F
DDCB1E3F
FDCB1E3F
CB38
DDCB1E38
FDCB1E38
CB39
DDCB1E39
FDCB1E39
CB3A
DDCB1E3A
FDCB1E3A
CB3B
DDCB1E3B
FDCB1E3B
CB3C
DDCB1E3C
FDCB1E3C
CB3D
DDCB1E3D
FDCB1E3D
CB3E

SRL
SRL
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
mn
d

H H T
[
+ F
0 Q.

o MO QWY ~ ~ ~ D3

[2 s s = s o
=X [

(HL)
(IX+d)
(IY+d)
DEFS
EQU
EQU
EQU

DDCB1E3E
FDCB1E3E
97

90

91

92

93

94

DD94
FD94

95

DD95
FD95
D648

96
DD961E
FD961E
AF

A8

A9

AA

AB

AC

DDAC
FDAC

AD

DDAD
FDAD
EE48

AE
DDAELE
FDAELE
12<-2#1
3CO0H/200H
40H!8
9%7+30H

00
01A00B
02

03

04

05
0648
07

08

09

0A

0B

0cC

0D
0E48
OF
101cC
11A00B
12

13

14

15
1648
17
1810
19

1A

1B

1C

1D
1E48
1F
2006
21A00B
22A00B
23

24

25
2648
27
28F8
29
2AA00B
2B

2C

2D
2E48
2F

NOP
LD
LD
INC
INC
DEC
LD
RLCA
EX
ADD
LD
DEC
INC
DEC
LD
RRCA
DJINZ
LD
LD
INC
INC
DEC
LD
RLA
JR
ADD
LD
DEC
INC
DEC
LD
RRA
JR
LD
LD
INC
INC
DEC
LD
DAA
JR
ADD
LD
DEC
INC
DEC
LD
CPL

Z80 Instructions by Object Code

30EC
31A00B
32A00B
33
34
35
3648
37
38DE
39
3AA00B
3B
3C
3D
3E48
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4EF
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

JR
LD
LD
INC
INC
DEC
LD
SCF
JR
ADD
LD
DEC
INC
DEC
LD
CCF
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

NC, e
SP, mn
(mn) , A
SP
(HL)
(HL)
(HL) ,n

C,e
HL, SP
A, (mn)

L)]
~ o)
3

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

HHHEHEHEHKEHMEBOUOUOUOUOOUOOOOOOQOOQOOOQOQ©EWoWWowwww

~

P~ D HOQW®E P~ DMHUOQE P~ IDEHOQWEPP ~HIDHUOOQW

Page 6-19

Z80 Instructions by Object Code

SUB

90

LD
LD
LD
LD
LD
LD

60

SUB
SUB
SUB
SUB
SUB

91

61

92
93
94
95

62
63
64
65
66
67
68
69

(HL)

SUB
SUB
SBC
SBC

96
97
98

H, (HL)

LD
LD
LD
LD
LD
LD
LD
LD

99

SBC
SBC
SBC
SBC

9A
9B
9C
9D
9E
9F

6A
6B
6C
6D
6E
6F
70
71

A, (HL)

SBC
SBC

L, (HL)

LD
LD

AND
AND
AND
AND
AND
AND

A0
Al
A2
A3
A4
A5

~ o~~~ o~ —~

—_— — — — — —

LD
LD
LD
LD
LD
LD

72
73
74
75

(HL)

AND
AND

A6

HALT
LD
LD
LD
LD
LD
LD
LD
LD

76
77
78

A7

(HL) , A

XOR
XOR
XOR

A8

A9

79

TA

XOR
XOR
XOR
XOR

AB
AC

7B
7C
7D
TE
TF
80
81

AD

(HL)

AE

A, (HL)

XOR
OR
OR
OR
OR
OR
OR
OR
OR
CP

AF

LD

BO

ADD
ADD
ADD

Bl

B2

82

B3

ADD
ADD
ADD
ADD
ADD
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

83
84
85
86

B4

B5

(HL)

B6

A, (HL)

B7

87
88
89

B8

CP

B9

CPp

BA
BB
BC

8A
8B
8C
8D
8E
8F

CP

CP

CP

BD

(HL)

CPp

BE

A, (HL)

CP

BF

Page 6-20

Z80 Instructions by Object Code

co RET NZ CB25 SLA L
Cl POP BC CB26 SLA (HL)
C2A00B JPp NZ, mn CB27 SLA A
C3A00B Jp mn CB28 SRA B
C4A00B CALL NZ, mn CB29 SRA C
C5 PUSH BC CB2A SRA D
C648 ADD A,n CB2B SRA E
C7 RST 0 CB2C SRA H
Cc8 RET Z CB2D SRA L
C9 RET CB2E SRA (HL)
CAAOQOO0B Jp Z,mn CB2F SRA A
CBOO RLC B CB30 SLL B
CBO1 RLC C CB31 SLL C
CB02 RLC D CB32 SLL D
CBO3 RLC E CB33 SLL E
CB04 RLC H CB34 SLL H
CBO05 RLC L CB35 SLL L
CB06 RLC (HL) CB36 SLL (HL)
CBO7 RLC A CB37 SLL A
CBO8 RRC B CB38 SRL B
CB09 RRC C CB39 SRL C
CBOA RRC D CB3A SRL D
CBOB RRC E CB3B SRL E
CBOC RRC H CB3C SRL H
CBOD RRC L CB3D SRL L
CBOE RRC (HL) CB3E SRL (HL)
CBOF RRC A CB3F SRL A
CB10 RL B CB40 BIT 0,B
CB11 RL C CB41 BIT 0,C
CB1l2 RL D CB42 BIT 0,D
CB13 RL E CB43 BIT 0,E
CB14 RL H CB44 BIT 0,H
CB15 RL L CB45 BIT 0,L
CB16 RL (HL) CB46 BIT 0, (HL)
CB17 RL A CB47 BIT 0,A
CB18 RR B CB48 BIT 1,B
CB19 RR C CB49 BIT 1,C
CB1A RR D CB4A BIT 1,D
CB1B RR E CB4B BIT 1,E
CB1C RR H CB4C BIT 1,H
CB1D RR L CB4D BIT 1,L
CB1E RR (HL) CB4E BIT 1, (HL)
CB1F RR A CB4F BIT 1,A
CB20 SLA B CB50 BIT 2,B
CB21 SLA C CB51 BIT 2,C
CB22 SLA D CB52 BIT 2,D
CB23 SLA E CB53 BIT 2,E
CB24 SLA H CB54 BIT 2,H

~

Page 6-21

Z80 Instructions by Object Code

CB55 BIT 2,L CB85 RES
CB56 BIT 2, (HL) CB86 RES
CB57 BIT 2,A CB87 RES
CB58 BIT 3,B CB88 RES
CB59 BIT 3,C CB89 RES
CB5A BIT 3,D CB8A RES
CB5B BIT 3,E CB8B RES
CB5C BIT 3,H CB8C RES
CB5D BIT 3,L CB8D RES
CB5E BIT 3, (HL) CB8E RES
CB5F BIT 3,A CB8F RES
CB60 BIT 4,B CB90 RES
CB61l BIT 4,C CB91 RES
CB62 BIT 4,D CB92 RES
CB63 BIT 4,E CB93 RES
CB64 BIT 4,H CB94 RES
CB65 BIT 4,L CB95 RES
CB66 BIT 4, (HL) CB96 RES
CB67 BIT 4,A CB97 RES
CB68 BIT 5,B CB98 RES
CB69 BIT 5,C CB99 RES
CB6A BIT 5,D CB9A RES
CB6B BIT 5,E CB9B RES
CB6C BIT 5H CBSC RES
CB6D BIT 5,L CB9D RES
CB6E BIT 5, (HL) CBYE RES
CB6F BIT 5,A CBOF RES
CB70 BIT 6,B CBAO RES
CB71 BIT 6,C CBAl RES
CB72 BIT 6,D CBA2 RES
CB73 BIT 6,E CBA3 RES
CB74 BIT 6,H CBA4 RES
CB75 BIT 6,L CBAS RES
CB76 BIT 6, (HL) CBAb6 RES
CB77 BIT 6,A CBA7 RES
CB78 BIT 7,B CBAS8 RES
CB79 BIT 7,C CBA9 RES
CB7A BIT 7,D CBAA RES
CB7B BIT 7,E CBAB RES
CB7C BIT 7,H CBAC RES
CB7D BIT 7,L CBAD RES
CB7E BIT 7, (HL) CBAE RES
CBTF BIT 7,A CBAF RES
CB80 RES 0,B CBBO RES
CB81 RES 0,C CBB1 RES
CB82 RES 0,D CBB2 RES
CB83 RES 0,E CBB3 RES
CB84 RES 0,H CBB4 RES

~

Page 6-22

N N N N N N N N N N N NS N N N N N N N N N N N S N N N N NS N NS N N N N NS N S N N s N s e S
jusy jus) us) usy T jas
= = = = = =
- - - - - -

~

~

oV OV oY Y OY U1 UT U U Ul U OO B D D D DD WWWW W W W WNNNNMNMNMNMNNRERRRRR BB OOO
o™ MO QWP ~HDHOOQWW PP ~EHFIZEHOQWE P ~BHFIDEHUODQE PP~ DHNUOQE P~ THOOQE>P ~H

~

Z80 Instructions by Object Code

CBB5 RES 6,L CBE5 SET 4,L
CBB6 RES 6, (HL) CBE6 SET 4, (HL)
CBB7 RES 6,A CBE7 SET 4,n
CBBS RES 7,B CBES SET 5,B
CBBO RES 7,C CBEO SET 5,C
CBBA RES 7,D CBEA SET 5,D
CBBB RES 7,E CBEB SET 5,E
CBBC RES 7,H CBEC SET 5,H
CBBD RES 7,L CBED SET 5,L
CBBE RES 7, (HL) CBEE SET 5, (HL)
CBBF RES 7,A CBEF SET 5,A
CBCO SET 0,B CBFO SET 6,B
CBC1 SET 0,C CBF1 SET 6,C
CBC2 SET 0,D CBF2 SET 6,D
CBC3 SET 0,E CBF3 SET 6,E
CBC4 SET 0,H CBF4 SET 6,H
CBC5 SET 0,L CBF5 SET 6,L
CBC6 SET 0, (HL) CBF6 SET 6, (HL)
CBC7 SET 0,A CBF7 SET 6,A
CBC8 SET 1,B CBFS8 SET 7,B
CBCO SET 1,C CBF9 SET 7,C
CBCA SET 1,D CBFA SET 7,D
CBCB SET 1,E CBFB SET 7,E
CBCC SET 1,H CBFC SET 7,H
CBCD SET 1,L CBFD SET 7,L
CBCE SET 1, (HL) CBFE SET 7, (HL)
CBCF SET 1,A CBFF SET 7,A
CBDO SET 2,B CCAOOB CALL Z,mn
CBD1 SET 2,C CDAOOB CALL mn
CBD2 SET 2,D CE48 ADC A,n
CBD3 SET 2,E CF RST 8

CBD4 SET 2,1 DO RET NC
CBD5 SET 2,L D1 POP DE
CBD6 SET 2, (HL) D2A00B JP NC, mn
CBD7 SET 2,A D348 ouT (n),A
CBDS SET 3,B D4A00B CALL NC, mn
CBD9 SET 3,C D5 PUSH DE
CBDA SET 3,D D648 SUB n
CBDB SET 3,E D7 RST 10H
CBDC SET 3,H D8 RET C
CBDD SET 3,L D9 EXX

CBDE SET 3, (HL) DAAOOB JP C,mn
CBDF SET 3,A DB48 IN A, (n)
CBEO SET 4,B DCAOOB CALL C,mn
CBE1 SET 4,C DDO09 ADD IX,BC
CBE2 SET 4,D DD19 ADD IX,DE
CBE3 SET 4,E DD21A00B LD IX, mn
CBE4 SET 4,H DD222A00B LD (mn) , IX

~

Page 6-23

DD23
DD24
DD25
DD2648
DD29
DD2AA00B
DD2B
DD2C
DD2D
DD2E48
DD341E
DD351E
DD361E48
DD39
DD44
DD45
DD461E
DD4C
DD4D
DD4E1E
DD54
DD55
DD561E
DD5C
DD5D
DD5E1E
DD60
DD61
DD62
DD63
DD64
DD65
DD661E
DD67
DD68
DD69
DD6A
DD6B
DD6C
DD6D
DD6E1E
DD6F
DD701E
DD711E
DD721E
DD731E
DD741E
DD751E

Page 6-24

INC
INC
DEC
LD
ADD
LD
DEC
INC
DEC
LD
INC
DEC
LD
ADD
LD

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

Z80 Instructions by Object Code

IX

HX

HX

HX, n
IX,IX
IX, (mn)
IX

LX

LX

LX,n
(IX+d)
(IX+d)
(IX+d),n
IX,SP

B, HX

B, LX

B, (IX+d)
C,HX
C,LX

C, (IX+d)
D, HX

D, LX

D, (IX+d)
E, HX

E, LX

E, (IX+d)
HX,B
HX, C
HX,D
HX,E

HX, HX
HX, LX

H, (IX+d)
HX, A
LX,B
LX, C
LX,D
LX,E

LX, HX
LX, LX

L, (IX+d)

DD771E
DD7C
DD7D
DD7E1E
DD84
DD85
DD861E
DD8C
DD8D
DD8E1E
DD94
DD95
DD961E
DDSC
DDSD
DDSE1E
DDA4
DDAS
DDA61E
DDAC
DDAD
DDAELE
DDB4
DDB5
DDB61E
DDBC
DDBD
DDBE1E
DDCB1EOO
DDCB1EO1
DDCB1EO2
DDCB1EO3
DDCB1EO04
DDCB1EOS5
DDCB1E06
DDCB1EQO7
DDCB1EOS8
DDCB1EO09
DDCB1EOA
DDCB1EOB
DDCB1EOC
DDCB1EOD
DDCB1EOE
DDCB1EOF
DDCB1E10
DDCB1EI11
DDCB1E12
DDCB1E13

LD

LD

LD

LD

ADD
ADD
ADD
ADC
ADC
ADC
SUB
SUB
SUB
SBC
SBC
SBC
AND
AND
AND
XOR
XOR
XOR
OR

OR

OR

CP

CP

CP

RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RL

RL

RL

RL

(IX+d), A
A, HX

A, LX

A, (IX+d)
A, HX

A, LX

A, (IX+d)
A, HX
A,LX

A, (IX+d)
HX

LX
(IX+d)
A, HX

A, LX

A, (IX+d)
HX

LX
(IX+d)
HX

LX
(IX+d)
HX

Z80 Instructions by Object Code

DDCB1E14 RL H, (IX+d) DDCB1E66 BIT 4, (IX+d)

DDCB1E15 RL L, (IX+d) DDCB1EGE BIT 5, (IX+d)

DDCB1E16 RL (IX+d) DDCB1E76 BIT 6, (IX+d)

DDCB1E17 RL A, (IX+d) DDCB1E7E BIT 7, (IX+d)

DDCB1E18 RR B, (IX+d) DDCB1E80 RES 0,B, (IX+d)
DDCB1E19 RR C, (IX+d) DDCB1E81 RES 0,C, (IX+d)
DDCB1E1A RR D, (IX+d) DDCB1E82 RES 0,D, (IX+d)
DDCB1E1B RR E, (IX+d) DDCB1ES83 RES 0,E, (IX+d)
DDCB1E1C RR H, (IX+d) DDCB1E84 RES 0,H, (IX+d)
DDCB1E1D RR L, (IX+d) DDCB1ES85 RES 0,L, (IX+d)
DDCB1ELE RR (IX+d) DDCB1ES86 RES 0, (IX+d)

DDCB1ELF RR A, (IX+d) DDCB1E87 RES 0,2, (IX+d)
DDCB1E20 SLA B, (IX+d) DDCB1E88 RES 1,B, (IX+d)
DDCB1E21 SLA C, (IX+d) DDCB1E89 RES 1,C, (IX+d)
DDCB1E22 SLA D, (IX+d) DDCB1ESA RES 1,D, (IX+d)
DDCB1E23 SLA E, (IX+d) DDCB1ESB RES 1,E, (IX+d)
DDCB1E24 SLA H, (IX+d) DDCB1ES8C RES 1,H, (IX+d)
DDCB1E25 SLA L, (IX+d) DDCB1ESD RES 1,L, (IX+d)
DDCB1E26 SLA (IX+d) DDCB1ESE RES 1, (IX+d)

DDCB1E27 SLA A, (IX+d) DDCB1ESF RES 1,2, (IX+d)
DDCB1E28 SRA B, (IX+d) DDCB1E90 RES 2,B, (IX+d)
DDCB1E29 SRA C, (IX+d) DDCB1E91 RES 2,C, (IX+d)
DDCB1E2A SRA D, (IX+d) DDCB1E92 RES 2,D, (IX+d)
DDCB1E2B SRA E, (IX+d) DDCB1E93 RES 2,E, (IX+d)
DDCB1E2C SRA H, (IX+d) DDCB1E94 RES 2,H, (IX+d)
DDCB1E2D SRA L, (IX+d) DDCB1E95 RES 2,L, (IX+d)
DDCB1E2FE SRA (IX+d) DDCB1E96 RES 2, (IX+d)

DDCB1E2F SRA A, (IX+d) DDCB1E97 RES 2,h, (IX+d)
DDCB1E30 SLL B, (IX+d) DDCB1E98 RES 3,B, (IX+d)
DDCB1E31 SLL C, (IX+d) DDCB1E99 RES 3,C, (IX+d)
DDCB1E32 SLL D, (IX+d) DDCB1E9A RES 3,D, (IX+d)
DDCB1E33 SLL E, (IX+d) DDCB1E9B RES 3,E, (IX+d)
DDCB1E34 SLL H, (IX+d) DDCB1E9C RES 3,H, (IX+d)
DDCB1E35 SLL L, (IX+d) DDCB1E9D RES 3,L, (IX+d)
DDCB1E36 SLL (IX+d) DDCB1EOE RES 3, (IX+d)

DDCB1E37 SLL A, (IX+d) DDCB1EOF RES 3,4, (IX+d)
DDCB1E38 SRL B, (IX+d) DDCB1EAQ RES 4,B, (IX+d)
DDCB1E39 SRL C, (IX+d) DDCB1EAL RES 4,C, (IX+d)
DDCB1E3A SRL D, (IX+d) DDCB1EA2 RES 4,D, (IX+d)
DDCB1E3B SRL E, (IX+d) DDCB1EA3 RES 4,E, (IX+d)
DDCB1E3C SRL H, (IX+d) DDCB1EA4 RES 4,H, (IX+d)
DDCB1E3D SRL L, (IX+d) DDCB1EAS RES 4,1, (IX+d)
DDCB1E3E SRL (IX+d) DDCB1EAG RES 4, (IX+d)

DDCB1E3F SRL A, (IX+d) DDCB1EA7 RES 4,1, (IX+d)
DDCB1E46 BIT 0, (IX+d) DDCB1EAS RES 5,B, (IX+d)
DDCB1E4E BIT 1, (IX+d) DDCB1EA9 RES 5,C, (IX+d)
DDCB1E56 BIT 2, (IX+d) DDCB1EAA RES 5,D, (IX+d)
DDCB1ESE BIT 3, (IX+d) DDCB1EAB RES 5,E, (IX+d)

Page 6-25

Z80 Instructions by Object Code

DDCB1EAC RES 5,H, (IX+d) DDCB1EDC SET 3,H
DDCB1EAD RES 5,L, (IX+d) DDCB1EDD SET 3,L,
DDCB1EAE RES 5, (IX+d) DDCB1EDE SET 3, (IX+d)
DDCB1EAF RES 5,2, (IX+d) DDCB1EDF SET 3,A, (
DDCB1EBO RES 6,B, (IX+d) DDCB1EEOQ SET 4,B, (
DDCB1EB1 RES 6,C, (IX+d) DDCB1EE1 SET 4,c, (
DDCB1EB2 RES 6,D, (IX+d) DDCB1EE2 SET 4,D, (IX+d
DDCB1EB3 RES 6,E, (IX+d) DDCB1EE3 SET 4,E, (
DDCB1EB4 RES 6,H, (IX+d) DDCB1EE4 SET 4,H, (
DDCB1EB5 RES 6,L, (IX+d) DDCB1EES SET 4,1, (
DDCB1EB6 RES 6, (IX+d) DDCB1EEG6 SET 4, (IX+d)
DDCB1EB7 RES 6,2, (IX+d) DDCB1EE7 SET 4,n, (
DDCB1EBS RES 7,B, (IX+d) DDCB1EES SET 5,B, (
DDCB1EB9 RES 7,C, (IX+d) DDCB1EE9 SET 5,C, (
DDCB1EBA RES 7,D, (IX+d) DDCB1EEA SET 5,D, (IX+d
DDCB1EBB RES 7,E, (IX+d) DDCB1EEB SET 5,E, (
DDCB1EBC RES 7,H, (IX+d) DDCB1EEC SET 5,H, (
DDCB1EBD RES 7,L, (IX+d) DDCB1EED SET 5,L, (
DDCB1EBE RES 7, (IX+d) DDCB1EEE SET 5, (IX+d)
DDCB1EBF RES 7,n, (IX+d) DDCB1EEF SET 5,2, (
DDCB1ECO SET 0,B, (IX+d) DDCB1EF0 SET 6,B, (
DDCB1EC1 SET 0,C, (IX+d) DDCB1EF1 SET 6,C, (
DDCB1EC2 SET 0,D, (IX+d) DDCB1EF2 SET 6,D, (IX+d
DDCB1EC3 SET 0,E, (IX+d) DDCB1EF3 SET 6,E, (
DDCB1EC4 SET 0,H, (IX+d) DDCB1EF4 SET 6,H, (
DDCB1EC5 SET 0,L, (IX+d) DDCB1EF5 SET 6,1, (
DDCB1EC6 SET 0, (IX+d) DDCB1EF6 SET 6, (IX+d)
DDCB1EC7 SET 0,2, (IX+d) DDCB1EF7 SET 6,A, (
DDCB1ECS SET 1,B, (IX+d) DDCB1EF8 SET 7,B, (
DDCB1ECY SET 1,C, (IX+d) DDCB1EF9 SET 7,C, (
DDCB1ECA SET 1,D, (IX+d) DDCB1EFA SET 7,D, (IX+d
DDCB1ECB SET 1,E, (IX+d) DDCB1EFB SET 7,E, (
DDCB1ECC SET 1,H, (IX+d) DDCB1EFC SET 7,H, (
DDCB1ECD SET 1,L, (IX+d) DDCB1EFD SET 7,L, (
DDCB1ECE SET 1, (IX+d) DDCB1EFE SET 7, (IX+d)
DDCB1ECF SET 1,2, (IX+d) DDCB1EFF SET 7,A
DDCB1EDO SET 2,B, (IX+d) DDE1 POP IX
DDCB1ED1 SET 2,C, (IX+d) DDE3 EX (SP), IX
DDCB1ED2 SET 2,D, (IX+d) DDE5 PUSH IX
DDCB1ED3 SET 2,E, (IX+d) DDE9 JP (IX)
DDCB1ED4 SET 2,H, (IX+d) DDF9 LD SP, IX
DDCB1ED5 SET 2,L, (IX+d) DE48 SBC A,n
DDCB1ED6 SET 2, (IX+d) DF RST 18H
DDCB1ED7 SET 2,4, (IX+d) EO RET PO
DDCB1EDS SET 3,B, (IX+d) E1l POP HL
DDCB1EDY SET 3,C, (IX+d) E2AQ0B JP PO, mn
DDCB1EDA SET 3,D, (IX+d) E3 EX (SP), HL
DDCB1EDB SET 3,E, (IX+d) E4AQ0B CALL PO, mn

Page 6-26

E5

E648

E7

E8

E9
EAAQOOB
EB
ECAQOOB
ED40
ED41
ED42
ED43A00B
ED44
ED45
ED46
ED47
ED48
ED49
ED4A
ED4BAOOB
ED4D
ED4F
ED50
ED51
ED52
ED53A00B
ED56
ED57
ED58
ED59
ED5A
ED5BAOOB
EDSE
ED5SF
ED60
ED61
ED62
ED67
ED68
ED69
ED6A
ED6F
ED70
ED71
ED72
ED73A00B
ED78
ED79

PUSH
AND
RST
RET
Jp
Jp
EX
CALL
IN
ouT
SBC

NEG
RETN
IM
LD
IN
ouT
ADC
LD
RETI
LD

ouT
SBC

IM
LD
IN
ouT
ADC

Z80 Instructions by Object Code

HL

20H

PE

(HL)

PE, mn
DE, HL
PE, mn
B, (C)
(C),B
HL, BC
(mn) , BC

(HL) , (C)
(C), (HL)
HL, SP
(mn) , SP
A, (C)
(C),A

ED7A
ED7BAOOB
EDAO
EDAl
EDA2
EDA3
EDAS
EDAY
EDAA
EDAB
EDBO
EDB1
EDB2
EDB3
EDBS8
EDB9
EDBA
EDBB
EE48
EF

FO

Fl
F2A00B
F3
F4A00B
F5
F648
F7

F8

F9
FAAOOB
FB
FCAQOOB
FDO9
FD19
FD21A00B
FD22A00B
FD23
FD24
FD25
FD2648
FD29
FD2AA00B
FD2B
FD2C
FD2D
FD2E48
FD341E

ADC
LD
LDI
CPI
INT
OUTI
LDD
CPD
IND
OUTD
LDIR
CPIR
INIR
OTIR
LDDR
CPDR
INDR
OTDR
XOR
RST
RET
POP
Jp
DI
CALL
PUSH
OR
RST
RET
LD
Jp
EI
CALL
ADD
ADD
LD
LD
INC
INC
DEC
LD
ADD
LD
DEC
INC
DEC
LD
INC

HL, SP
SP, (mn)

28H

AF

P, mn

P, mn
AF

30H

SP,HL
M, mn

M, mn
1Y,BC
1Y, DE
1Y, mn
(mn), IY
IY

HY

HY
HY,n
IY,1IY
1Y, (mn)
1Y

LY

LY
LY, n
(IY+d)

Page 6-27

FD351E
FD361E48
FD39
FD44
FD45
FD461E
FD4C
FD4D
FD4E1E
FD54
FD55
FD561E
FD5C
FD5D
FDSELE
FD60
FD61
FD62
FD63
FD64
FD65
FD661E
FD67
FD68
FD69
FD6A
FD6B
FD6C
FD6D
FD6E1E
FD6F
FD701E
FD711E
FD721E
FD731E
FD741E
FD751E
FD771E
FD7C
FD7D
FD7E1E
FD84
FD85
FD861E
FD8C
FD8D
FD8E1E
FD94

Page 6-28

DEC
LD
ADD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
ADD
ADD
ADD
ADC
ADC
ADC
SUB

Z80 Instructions by Object Code

(IY+4d)
(IY+d),n
1Y, SP

B, HY
B,LY

B, (IY+d)
C,HY
c,LY

C, (IY+d)
D, HY
D,LY

D, (IY+d)
E, HY
E,LY

E, (IY+d)
HY,B
HY,C
HY,D
HY,E

HY, HY
HY, LY

H, (IY+d)
HY, A
1Y,B
LY, C
LY,D
LY,E

LY, HY
LY, LY

L, (IY+d)

FD95
FD961E
FDSC
FDSD
FDOE1E
FDA4
FDAS
FDAGLE
FDAC
FDAD
FDAELE
FDB4
FDB5
FDB61E
FDBC
FDBD
FDBE1E
FDCB1EOO
FDCB1EO1
FDCB1EO2
FDCB1EO3
FDCB1EO4
FDCB1EOS
FDCB1EO6
FDCB1EO7
FDCB1EOS8
FDCB1EOS
FDCB1EOA
FDCB1EOB
FDCB1EOC
FDCB1EOD
FDCB1EOE
FDCB1EOF
FDCB1E1O
FDCB1E11l
FDCB1E12
FDCB1E13
FDCB1E14
FDCB1E1S5
FDCB1E16
FDCB1E17
FDCB1E18
FDCB1E19
FDCB1E1A
FDCB1E1B
FDCB1EIC
FDCB1E1D
FDCB1E1E

SUB
SUB
SBC
SBC
SBC
AND
AND
AND
XOR
XOR
XOR
OR
OR
OR
CP
CP
CP
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RRC
RL
RL
RL
RL
RL
RL
RL
RL
RR
RR
RR
RR
RR
RR
RR

LY
(IY+d)
A, HY

A, LY

A, (IY+d)
HY

LY
(IY+d)
HY

LY
(IY+d)
HY

Z80 Instructions by Object Code

FDCBIELF RR A, (IY+d) FDCB1E87 RES 0,A, (IY+d)
FDCB1E20 SLA B, (IY+d) FDCB1E88 RES 1,B, (IY+d)
FDCB1E21 SLA C, (IY+d) FDCB1E89 RES 1,C, (IY+d)
FDCB1E22 SLA D, (IY+d) FDCB1ESA RES 1,D, (IY+d)
FDCB1E23 SLA E, (IY+d) FDCB1ESB RES 1,E, (IY+d)
FDCB1E24 SLA H, (IY+d) FDCB1ESC RES 1,H, (IY+d)
FDCB1E25 SLA L, (IY+d) FDCB1ESD RES 1,L, (IY+d)
FDCB1E26 SLA (IY+d) FDCB1ESE RES 1, (IY+d)

FDCB1E27 SLA A, (IY+d) FDCB1ESF RES 1,A, (IY+d)
FDCB1E28 SRA B, (IY+d) FDCB1E90 RES 2,B, (IY+d)
FDCB1E29 SRA C, (IY+d) FDCB1E91 RES 2,C, (IY+d)
FDCB1E2A SRA D, (IY+d) FDCB1E92 RES 2,D, (IY+d)
FDCB1E2B SRA E, (IY+d) FDCB1E93 RES 2,E, (IY+d)
FDCB1E2C SRA H, (IY+d) FDCB1E94 RES 2,8, (IY+d)
FDCB1E2D SRA L, (IY+d) FDCB1E95 RES 2,L, (IY+d)
FDCB1E2FE SRA (IY+d) FDCB1E96 RES 2, (IY+d)

FDCB1E2F SRA A, (IY+d) FDCB1E97 RES 2,h, (IY+d)
FDCB1E30 SLL B, (IY+d) FDCB1E98 RES 3,B, (IY+d)
FDCB1E31 SLL C, (IY+d) FDCB1E99 RES 3,C, (IY+d)
FDCB1E32 SLL D, (IY+d) FDCB1E9A RES 3,D, (IY+d)
FDCB1E33 SLL E, (IY+d) FDCB1E9B RES 3,E, (IY+d)
FDCB1E34 SLL H, (IY+d) FDCB1E9C RES 3,H, (IY+d)
FDCB1E35 SLL L, (IY+d) FDCB1EOD RES 3,L, (IY+d)
FDCB1E36 SLL (IY+d) FDCB1EOE RES 3, (IY+d)

FDCB1E37 SLL A, (IY+d) FDCB1EOF RES 3,2, (IY+d)
FDCB1E38 SRL B, (IY+d) FDCB1EAOQ RES 4,B, (IY+d)
FDCB1E39 SRL C, (IY+d) FDCB1EAL RES 4,C, (IY+d)
FDCB1E3A SRL D, (IY+d) FDCB1EA2 RES 4,D, (IY+d)
FDCB1E3B SRL E, (IY+d) FDCB1EA3 RES 4,E, (IY+d)
FDCB1E3C SRL H, (IY+d) FDCB1EA4 RES 4,H, (IY+d)
FDCB1E3D SRL L, (IY+d) FDCB1EAS RES 4,1, (IY+d)
FDCB1E3E SRL (IY+d) FDCB1EAG RES 4, (IY+d)

FDCB1E3F SRL A, (IY+d) FDCB1EA7 RES 4,n, (IY+d)
FDCB1E46 BIT 0, (IY+d) FDCB1EAS RES 5,B, (IY+d)
FDCB1EAE BIT 1, (IY+d) FDCB1EA9 RES 5,C, (IY+d)
FDCB1E56 BIT 2, (IY+d) FDCB1EAA RES 5,D, (IY+d)
FDCB1E5E BIT 3, (IY+d) FDCB1EAB RES 5,E, (IY+d)
FDCB1E66 BIT 4, (IY+d) FDCB1EAC RES 5,H, (IY+d)
FDCB1EGE BIT 5, (IY+d) FDCB1EAD RES 5,L, (IY+d)
FDCB1E76 BIT 6, (IY+d) FDCB1EAE RES 5, (IY+d)

FDCB1E7E BIT 7, (IY+d) FDCB1EAF RES 5,2, (IY+d)
FDCB1E80 RES 0,B, (IY+d) FDCB1EBO RES 6,B, (IY+d)
FDCB1ES1 RES 0,C, (IY+d) FDCB1EB1 RES 6,C, (IY+d)
FDCB1E82 RES 0,D, (IY+d) FDCB1EB2 RES 6,D, (IY+d)
FDCB1E83 RES 0,E, (IY+d) FDCB1EB3 RES 6,E, (IY+d)
FDCB1E84 RES 0,H, (IY+d) FDCB1EB4 RES 6,H, (IY+d)
FDCB1ES85 RES 0,L, (IY+d) FDCB1EB5 RES 6,L, (IY+d)
FDCB1E86 RES 0, (IY+d) FDCB1EB6 RES 6, (IY+d)

Page 6-29

FDCB1EB7
FDCB1EBS
FDCB1EB9
FDCB1EBA
FDCB1EBB
FDCB1EBC
FDCB1EBD
FDCB1EBE
FDCB1EBF
FDCB1ECO
FDCB1EC1
FDCB1EC2
FDCB1EC3
FDCB1EC4
FDCB1ECS5
FDCB1EC6
FDCB1EC7
FDCB1ECS
FDCB1ECY
FDCB1ECA
FDCB1ECB
FDCB1ECC
FDCB1ECD
FDCB1ECE
FDCB1ECF
FDCB1EDO
FDCB1ED1
FDCB1ED2
FDCB1ED3
FDCB1ED4
FDCB1EDS
FDCB1ED6
FDCB1ED7
FDCB1EDS
FDCB1EDY
FDCB1EDA
FDCB1EDB
FDCB1EDC
FDCB1EDD
FDCB1EDE
FDCB1EDF
FDCB1EEO
FDCB1EE1l
FDCB1EE2
FDCB1EE3
FDCB1EE4
FDCB1EES
FDCB1EE®6

Page 6-30

RES
RES
RES
RES
RES
RES
RES
RES
RES
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

Z80 Instructions by Object Code

\\\\\\\\\\\\\\\\\\\\\\\
N AN AN

[N [N [N

+ + +

Qo Q Q

= = =

~

~

\\\\\\\\\\\\\\\\\\\
O o- O~
= =
+ +
Qo Q
=z =z

~

~

~ @D HOQW®E P~ DHUOQE P~ DEHOQWE P ~BHIDEHUOQWW®RE ~BHFITDTHUOQWEP ~BFHTHOOQWTEW®

BB B DD DD WWwWWWWW W W NN MNDMNNNNNERE R R R RPR R R OO OOCOOOCO NN YN SN YYdYad<aao
~

~

=~
<
+
(o}

FDCB1EE7
FDCB1EES
FDCB1EEY
FDCB1EEA
FDCB1EEB
FDCB1EEC
FDCB1EED
FDCB1EEE
FDCB1EEF
FDCB1EFO
FDCB1EF1
FDCB1EF2
FDCB1EF3
FDCB1EF4
FDCB1EF5
FDCB1EF6
FDCB1EF7
FDCB1EFS8
FDCB1EF9
FDCB1EFA
FDCB1EFB
FDCB1EFC
FDCB1EFD
FDCB1EFE
FDCB1EFF
FDE1
FDE3
FDES
FDE9
FDF9
FE48

FF

mn

d

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
POP
EX
PUSH
Jp
LD
CP
RST
DEFS
EQU
EQU
EQU

(1Y)

SP,IY
n

38H
12<-2#1
3CO0H/200H
40H!8
9%7+30H

Undocumented Instructions

Regardless what you may have heard about the undocumented instructions, all Z80°s are
the same (except for the timing problem with the P/V flag that was corrected with the
CMOS chip). I did not say that a Z80° is the same as an HD64180, it is not.

Zilog, the Z80° designer, indicates that a Z80® will execute 696 instructions. However,
the number of unique instructions a Z80® will execute is 1138, and the number of
different instructions a Z80° can encounter is 1786. The table below illustrates how I
derived at the 1786 number:

Zilog Unique Total

Opcodes 00 through FF; less CB, DD, ED, and FD 252 252 252
CB Opcodes 248 256 256
DD Opcodes; less DDCB 39 85 255
DDCB Opcodes 31 200 256
ED Opcodes 56 60 256
FD Opcodes; less FDCB 39 85 255
FDCB opcodes 31 200 256
TOTALS 696 1138 1786

Unigque summary:

CB Family

The eight additional CB instructions not documented by Zilog are CB30 through CB37.
The de facto opcode for CB30 through CB37 is SLL. The SLL instruction is described on
page 5-72. The symbolic representation of this instruction is:

CY%—————-7<6<5<4<3<2<l<0%——l

The SLL instruction doubles the value in the register and increments by one. The S, 7Z,
P/V, and C flags are affected as expected (for complete detail, please see page 5-72).

The SLL instruction can be simulated with the following instruction consecution:
SLA r
INC r this requires three bytes and affects the flags differently

or, if r is the accumulator:
SCF
RLA this requires two bytes and only affects the C flag.

The HD64180 does not recognize the SLL instruction. If an HD64180 encounters an SLL
instruction, the HD64180 performs a RST 0 on the CB part and executes the code
starting with the 30 through 37 as [part of] the next instruction (provided the PC
returns from the RST 0).

Page 7-1

Undocumented Instructions

DD Family

The 46 additional DD instructions not documented by Zilog are the half-index
instructions - the operands with HX and LX. [NOTE: for the Z280", Zilog refers to the
upper-half of the IX register as IXH, and the lower half of the IX register as IXL. I
prefer HX over IXH and LX over IXL to keep all register symbols at one or two
characters.] The HD64180 does not recognize the half-index instructions.

DDCB Family

The 169 additional DDCB instructions not documented by Zilog are the rotate/shift-load
(57), reset-load (56), and set-load (56) instructions. The rotate/shift-load group has
one more undocumented instruction than the other two groups because Zilog does not
document the SLL (IX+d) mnemonic. The HD64180 does not recognize the 169 additional
DDCB instructions.

ED Family

The four additional ED instructions are:

ED70 IN (HL), (C) nothing is transferred; however, flags are updated
ED71 OuT (C), (HL) zero is output to port

ED63nm LD (mn),HL performs (less efficiently) the same as 22nm
ED6Bnm LD HL, (mn) performs (less efficiently) the same as 2Anm

The HD64180 recognizes ED70, ED63nm, and ED6Bnm [the HD64180 processes ED71 as RST O
followed by LD (HL),C].

FD Family

The 46 additional FD instructions not documented by Zilog are the half-index
instructions - the operands with HY and LY. [NOTE: for the Z280", Zilog refers to the
upper-half of the IY register as IYH, and the lower half of the IY register as IYL. I
prefer HY over IYH and LY over IYL to keep all register symbols at one or two
characters.] The HD64180 does not recognize the half-index instructions.

FDCB Family

The 169 additional FDCB instructions not documented by Zilog are the rotate/shift-load
(57), reset-load (56), and set-load (56) instructions. The rotate/shift-load group has
one more undocumented instruction than the other two groups because Zilog does not
document the SLL (IY+d) mnemonic. The HD64180 does not recognize the 169 additional
FDCB instructions.

Of the 1,138 unique instructions, ZEUS can produce 1,136. For the LD (mn),HL
instruction, Zeus produces 22nm and does not produce ED63nm. For the LD HL, (mn)
instruction, ZEUS produces 2Anm and does not produce ED6Bnm.

Page 7-2

How a Z80® processes DD[[xx[xx]]xx]

DDJ00 NOP : NOP DD[20 | n NOP : JR NZ,n DDJ40 NOP : LD B,B DDJ60 LD HX,B
DD|01 NOP : LD BC,mn DD[21 | n LD IX,word DD|41 NOP : LD B,C DD|61 LD HX,C
DD|02 NOP : LD (BC),A DD|[22 LD (word),IX DD|42 NOP : LD B,D DD|62 LD HX,D
DD|03 NOP : INC BC DD|23 INC IX DD|43 NOP : LD B,E DD|63 LD HX,E
DD|04 NOP : INC B DD|24 INC HX DD|44 LD B,HX DD|64 LD HX,HX
DD|05 NOP : DEC B DD|25 DEC HX DD|45 LD B,LX DD|65 LD HX,LX
DD|06 NOP : LD B,n DD|26 | n LD HX,byte DD|46 LD B,(IX+d) DD|66 | d LD H,(IX+d)
DD|07 NOP : RLCA DD|[27 NOP : DAA DD|47 NOP : LD B,A DD|67 LD HX,A
DD|08 NOP : EX AF,AF' DD[28 | n NOP :JR Z,n DD|48 NOP:LDC,B DD|68 LDLX,B
DD|09 ADD IX,BC DD|29 ADD IX,IX DD|49 NOP : LD C,C DD|69 LD LX,C
DD|0A NOP : LD A,(BC) DD[2A | n LD IX,(word) DD|4A NOP : LD C,D DD|6A LD LX,D
DD|0B NOP : DEC BC DD|2B DEC IX DD|4B NOP : LD C,E DD|6B LD LX,E
DD|0C NOP : INC C DD|2C INC LX DD|4C LD C,HX DD|6C LD LX,HX
DD|0D NOP : DEC C DD|2D DEC LX DD|4D LD C,LX DD|6D LD LX,LX
DD|0E NOP : LD C,n DD|2E | n LD LX,byte DD|4E LD C,(IX+d) DD|6E | d LD L,(IX+d)
DD|OF NOP : RRCA DD|2F NOP : CPL DD|4F NOP : LD C,A DD|6F LDLX,A
DD|10 NOP : DINZ n DD|30 NOP : JR NC,n DD|50 NOP : LD D,B DD|70 | d LD (IX+d),B
DD|11 NOP : LD DE,mn DD|31 NOP : LD SP,mn DD|51 NOP : LD D,C DD|71 | d LD (IX+d),C
DD|12 NOP : LD (DE),A DD|32 NOP : LD (mn),A DD|52 NOP : LD D,D DD|72 | d LD (IX+d),D
DD|[13 NOP : INC DE DD|33 NOP : INC SP DD|53 NOP : LD D,E DD[73 | d LD (IX+d),E
DD|14 NOP : INC D DD|34 | d INC (IX+d) DD|54 LD D,HX DD|74 | d LD (IX+d),H
DD|15 NOP : DEC D DD|35 | d DEC (IX+d) DD|55 LD D,LX DD|75 | d LD (IX+d),L
DD|16 NOP : LD D;n DD|[36 | d LD (IX+d),byte DD|56 LD D, (IX+d) DD|76 NOP : HALT
DD|17 NOP : RLA DD|37 NOP : SCF DD|57 NOP : LD D,A DD|77 | d LD (IX+d),A
DD|18 NOP :JR n DD[38 | n NOP : JR C,n DD|58 NOP : LD E,B DD|78 NOP :LD A,B
DD|19 ADD IX,DE DD|39 ADD IX,SP DD|59 NOP:LDE,C DD|[79 NOP: LD A,C
DD|1A NOP : LD A,(DE) DD[3A [n NOP : LD A,(mn) DD|5A NOP : LD E,D DD|7A NOP : LD AD
DD|1B NOP : DEC DE DD|3B NOP : DEC SP DD|5B NOP: LD E,E DD|7B NOP: LD A,E
DD|1C NOP : INC E DD|[3C NOP : INC A DD|5C LD E,HX DD|7C LD A HX
DD|1D NOP : DEC E DD|[3D NOP : DEC A DD|5D LD E,LX DD|7D LD A,LX
DD|1E NOP : LD E,n DD|3E | n NOP : LD A,n DD|5E LD E,(IX+d) DD|7E | d LD A, (IX+d)
DD|1F NOP : RRA DD|[3F NOP : CCF DD|[5F NOP : LD E,A DD|7F NOP: LD AA

Page 7-3

How a Z80® processes DD[[xx[xx]]xx]

DD |80 NOP : ADD A,B DD A0 NOP : AND B DD|CO NOP : RET Nz DD|EO NOP : RET PO
DD|81 NOP : ADD A,C DDAl NOP : AND C DD|C1 NOP : POP BC DD|E1 POP IX

DD |82 NOP : ADD AD DD|A2 NOP : AND D DD|C2 m |NOP : JP NZ,mn DD |E2 NOP : JP PO,mn
DD|(83 NOP : ADD AE DD|A3 NOP : AND E DD|C3 m |[NOP : JP mn DD|E3 EX (SP),IX

DD |84 ADD A,HX DD (A4 AND HX DD|C4 m [NOP : CALL NZ,mn DD |E4 NOP : CALL PO,mn
DD |85 ADD A,LX DD|A5 AND LX DD|C5 NOP : PUSH BC DD [E5 PUSH IX

DD |86 ADD A, (IX+d) DD|A6 AND (IX+d) DD|C6 NOP : ADD A,n DD |E6 NOP : AND n

DD |87 NOP : ADD AA DD (A7 NOP : AND A DD|C7 NOP : RST 00H DD|E7 NOP : RST 20H
DD |88 NOP : ADC A,B DD (A8 NOP : XOR B DD|C8 NOP : RET Z DD |E8 NOP : RET PE
DD|89 NOP : ADC AC DD|A9 NOP : XOR C DD|C9 NOP : RET DD |E9 JP (IX)

DD |(8A NOP : ADC A,D DD [AA NOP : XOR D DD|CA m |[NOP : JP Z,mn DD [EA NOP : JP PE,mn
DD (8B NOP : ADC AE DD|AB NOP : XOR E DD|CB see Opcode DDCB DD|EB NOP : EX DE,HL
DD|8C ADC A,HX DD|AC XOR HX DD|CC m |NOP : CALL Z,mn DD|EC NOP : CALL PE,mn
DD|8D ADC A,LX DD|AD XOR LX DD|CD m |NOP : CALL mn DD |ED NOP : EDxx

DD (8E ADC A,(1X+d) DD|AE XOR (IX+d) DD|CE NOP : ADC A,n DD |EE NOP : XOR n

DD |8F NOP : ADC A A DD |AF NOP : XOR A DD|CF NOP : RST 08H DD EF NOP : RST 28H
DD|90 NOP : SUB B DD|(BO NOP: ORB DD|DO NOP : RET NC DD|FO NOP : RET P
DD|91 NOP :SUB C DD|B1 NOP:ORC DD|D1 NOP : POP DE DD|F1 NOP : POP AF
DD|92 NOP : SUB D DD (B2 NOP:ORD DD|D2 m |[NOP : JP NC,mn DD |F2 NOP : JP P,mn
DD|93 NOP : SUB E DD|B3 NOP:ORE DD|D3 NOP : OUT (m),A DD|F3 NOP : DI

DD|94 SUB HX DD|B4 OR HX DD|D4 m |NOP : CALL NC,mn DD|F4 NOP : CALL P,mn
DD |95 SUB LX DD|B5 OR LX DD |D5 NOP : PUSH DE DD|F5 NOP : PUSH AF
DD (96 SUB (IX+d) DD|B6 OR (IX+d) DD |D6 NOP : SUB n DD|F6 NOP : ORnNn

DD |97 NOP : SUB A DD |(B7 NOP : OR A DD |D7 NOP : RST 10H DD|F7 NOP : RST 30H
DD |98 NOP : SBC A,B DD (B8 NOP : CP B DD |D8 NOP : RET C DD|F8 NOP : RET M

DD |99 NOP : SBCA,C DD (B9 NOP:CPC DD |D9 NOP : EXX DD|F9 LD SP,IX

DD|9A NOP : SBC A,D DD|BA NOP : CP D DD|DA m |[NOP : JP C,mn DD|FA NOP : JP M,mn
DD (9B NOP : SBC AE DD|BB NOP :CPE DD |DB NOP : IN A,(m) DD|FB NOP : El

DD|9C SBC A,HX DD|(BC CP HX DD|DC m [NOP : CALL C,mn DD|FC NOP : CALL M,mn
DD|9D SBCA,LX DD|BD CPLX DD|DD NOP : DDxxX[xX[xX]] DD|FD NOP : FDXx[xx[xx]]
DD|9E SBC A,(IX+d) DD|(BE CP (IX+d) DD |DE NOP : SBC An DD|FE NOP : CP n

DD |9F NOP : SBC A /A DD|BF NOP : CP A DD|DF NOP : RST 18H DD|FF NOP : RST 38H

Page 7-4

How a Z80® processes DDCBXxxxX

DD|CB[d [00[RLC B,(IX+d) DD|CB[d [20[SLA B,(IX+d) DD|CB[d [40[BIT 0,(IX+d) DD[CB] d [60[BIT 4,(IX+d)
DD|CB| d [01|RLC C,(IX+d) DD|CB| d [21[SLA C,(IX+d) DD|CB| d [41|BIT 0,(IX+d) DD|CB]| d [61[BIT 4,(IX+d)
DD|CB| d [02|RLC D,(IX+d) DD|CB| d [22|SLA D,(IX+d) DD|CB| d [42BIT 0,(IX+d) DD|CB]| d [62[BIT 4,(IX+d)
DD|CB| d [03|RLC E,(IX+d) DD|CB| d [23|SLA E,(IX+d) DD|CB| d [43|BIT 0,(IX+d) DD|CB]| d [63[BIT 4,(IX+d)
DD|CB| d |04 |RLC H,(IX+d) DD|CB| d |24 [SLA H,(IX+d) DD|CB| d [44[BIT 0,(IX+d) DD|CB]| d [64[BIT 4,(IX+d)
DD|CB| d [05|RLC L,(IX+d) DD|CB| d [25[SLA L,(IX+d) DD|CB| d [45[BIT 0,(IX+d) DD|CB| d |65 |BIT 4,(IX+d)
DD|CB| d |06 [RLC (IX+d) DD|CB| d [26[SLA (IX+d) DD|CB| d |46 [BIT 0,(IX+d) DD|CB| d |66 [BIT 4,(IX+d)
DD|CB| d [07 |[RLC A, (IX+d) DD|CB| d |27 [SLA A,(IX+d) DD|CB| d [47 [BIT 0,(IX+d) DD|CB]| d |67 |BIT 4,(IX+d)
DD|CB| d [08|RRC B,(IX+d) DD|CB| d [28|SRA B,(IX+d) DD|CB| d [48|BIT 1,(IX+d) DD|CB]| d [68[BIT 5,(IX+d)
DD|CB| d [09|RRC C,(IX+d) DD|CB| d [29[SRA C,(IX+d) DD|CB| d [49[BIT 1,(IX+d) DD|CB| d |69 [BIT 5,(IX+d)
DD|CB| d |0A|RRC D,(IX+d) DD|CB| d [2A[SRA D,(IX+d) DD|CB| d [4A[BIT 1,(IX+d) DD|CB]| d [6A[BIT 5,(IX+d)
DD|CB| d |0B|RRC E,(IX+d) DD|CB| d [2B|SRA E,(IX+d) DD|CB| d [4B|BIT 1,(IX+d) DD|CB]| d [6B[BIT 5,(IX+d)
DD|CB| d [0C|RRC H,(IX+d) DD|CB| d [2C[SRA H,(IX+d) DD|CB| d [4C|BIT 1,(IX+d) DD|CB| d [6C|BIT 5,(IX+d)
DD|CB| d |[0D|RRC L, (IX+d) DD|CB| d [2D|SRA L,(IX+d) DD|CB| d [4D|BIT 1,(IX+d) DD|CB| d [6D|BIT 5,(IX+d)
DD|CB| d |0E|RRC (IX+d) DD|CB]| d [2E[SRA (IX+d) DD|CB| d [4E|BIT 1,(IX+d) DD|CB| d |6E|BIT 5,(IX+d)
DD|CB| d [0OF|RRC A, (IX+d) DD|CB| d [2F|[SRA A, (IX+d) DD|CB| d [4F [BIT 1,(IX+d) DD|CB]| d [6F|BIT 5,(IX+d)
DD|CB| d [10|RL B,(IX+d) DD|CB| d [30[SLL B,(IX+d) DD|CB| d |50 [BIT 2,(IX+d) DD|CB]| d [70[BIT 6,(IX+d)
DD|CB| d |11 |RL C,(IX+d) DD|CB| d [31|SLL C,(IX+d) DD|CB| d |51 [BIT 2,(IX+d) DD|CB]| d [71[BIT 6,(IX+d)
DD|CB| d [12|RL D,(IX+d) DD|CB| d [32|SLL D,(IX+d) DD|CB| d |52 [BIT 2,(IX+d) DD|CB]| d [72[BIT 6,(IX+d)
DD|CB| d [13|RL E,(IX+d) DD|CB| d [33[SLL E,(IX+d) DD|CB| d [53|BIT 2,(IX+d) DD|CB| d |73[BIT 6,(IX+d)
DD|CB| d |14 |RL H,(IX+d) DD|CB| d [34[SLL H,(IX+d) DD|CB| d |54 [BIT 2,(IX+d) DD|CB| d [74[BIT 6,(IX+d)
DD|CB| d |15 |RL L,(IX+d) DD|CB| d [35|SLL L,(IX+d) DD|CB| d |55 [BIT 2,(IX+d) DD|CB]| d [75|BIT 6,(IX+d)
DD|CB| d [16|RL (IX+d) DD|CB| d [36[SLL (IX+d) DD|CB| d [56 [BIT 2,(IX+d) DD|CB| d |76 [BIT 6,(1X+d)
DD|CB| d |17 |RL A,(IX+d) DD|CB| d [37SLL A,(IX+d) DD|CB| d |57 [BIT 2,(IX+d) DD|CB]| d |77 BIT 6,(IX+d)
DD|CB| d [18|RR B,(IX+d) DD|CB| d [38|SRL B,(IX+d) DD|CB| d |58 BIT 3,(IX+d) DD|CB]| d [78[BIT 7,(IX+d)
DD|CB| d [19|RR C,(IX+d) DD|CB| d [39[SRL C,(IX+d) DD|CB| d [59 [BIT 3,(IX+d) DD|CB]| d [79[BIT 7,(IX+d)
DD|CB| d [1A|RR D,(IX+d) DD|CB| d [3A[SRL D,(IX+d) DD|CB| d [5A[BIT 3,(IX+d) DD|CB]| d [7A[BIT 7,(IX+d)
DD|CB| d |1B|RR E,(IX+d) DD|CB| d [3B|SRL E,(IX+d) DD|CB| d [5B|BIT 3,(IX+d) DD|CB]| d [7B[BIT 7,(IX+d)
DD|CB| d [1C|RR H,(IX+d) DD|CB| d [3C|[SRL H,(IX+d) DD|CB| d [5C|BIT 3,(IX+d) DD|CB| d [7C|BIT 7,(1X+d)
DD|CB| d [1D|RRL,(IX+d) DD|CB| d [3D|SRL L,(IX+d) DD|CB| d [5D|BIT 3,(IX+d) DD|CB| d [7D|BIT 7,(IX+d)
DD|CB| d |[1E|RR (IX+d) DD|CB| d |3E[SRL (IX+d) DD|CB| d |5E[BIT 3,(IX+d) DD|CB| d |7E|BIT 7,(1X+d)
DD|CB| d [1F|RR A, (IX+d) DD|CB| d [3F[SRL A,(IX+d) DD|CB| d [5F [BIT 3,(IX+d) DD|CB]| d [7F|BIT 7,(IX+d)

Page 7-5

How a Z80® processes DDCBXxxxX

DD|CB] d [80[RES 0,B,(IX+d) DD|CB] d [AO |RES 4,B,(IX+d) DD|CB] d |CO[SET 0,B,(IX+d) DD|CB] d |EO[RES 4,B,(IX+d)
DD|CB| d |81 |RES 0,C,(IX+d) DD|CB| d | Al |RES 4,C,(IX+d) DD|CB| d |C1|SET 0,C,(IX+d) DD|CB| d |E1|[SET 4,C,(IX+d)
DD|CB| d |82 |RES 0,D,(IX+d) DD|CB| d | A2 |RES 4,D,(IX+d) DD|CB| d |C2|SET 0,D,(IX+d) DD|CB| d |E2|SET 4,D,(IX+d)
DD|CB] d |83|RES 0,E,(IX+d) DD|CB| d | A3 |RES 4,E,(IX+d) DD|CB| d [C3|SET 0,E,(IX+d) DD|CB| d |E3|SET 4,E,(IX+d)
DD|CB| d |84 |RES 0,H,(IX+d) DD|CB| d | A4 |RES 4,H,(IX+d) DD|CB| d |C4|SET 0,H,(IX+d) DD|CB| d |E4|SET 4,H,(IX+d)
DD|CB| d |85 |RES 0,L,(IX+d) DD|CB| d | A5 |RES 4,L,(IX+d) DD|CB| d |C5|[SET 0,L,(IX+d) DD|CB| d |E5|[SET 4,L,(IX+d)
DD|CB] d |86 [RES 0,(IX+d) DD|CB| d | A6 |RES 4,(1X+4) DD|CB| d |C6|SET 0,(IX+d) DD|CB| d |E6|SET 4,(1X+4)

DD|CB| d |87 |RES 0,A,(IX+d) DD|CB| d |A7 |RES 4,A,(IX+d) DD|CB| d |C7|SET 0,A,(IX+d) DD|CB| d |E7|[SET 4,A,(IX+d)
DD|CB| d |88 |RES 1,B,(IX+d) DD|CB| d | A8 |RES 5,B,(IX+d) DD|CB| d |C8|SET 1,B,(IX+d) DD|CB| d |E8|SET 5,B,(IX+d)
DD|CB| d |89 |RES 1,C,(IX+d) DD|CB| d [A9 |RES 5,C,(IX+d) DD|CB| d |C9|SET 1,C,(IX+d) DD|CB| d |E9|SET 5,C,(IX+d)
DD|CB| d |8A|RES 1,D,(IX+d) DD|CB| d [AA |RES 5,D,(IX+d) DD|CB| d |CA|SET 1,D,(IX+d) DD|CB| d |EA|SET 5,D,(IX+d)
DD|CB| d |8B|RES 1,E,(IX+d) DD|CB| d |AB |RES 5,E,(IX+d) DD|CB| d |CB|SET 1,E,(IX+d) DD|CB| d |EB|SET 5,E,(IX+d)
DD|CB| d [8C|RES 1,H,(IX+d) DD|CB| d [AC|RES 5,H,(IX+d) DD|CB| d |CC|SET 1,H,(IX+d) DD|CB| d |EC|SET 5,H,(IX+d)
DD|CB| d [8D|RES 1,L,(IX+d) DD|CB| d [AD |RES 5,L,(IX+d) DD|CB| d [CD|[SET 1,L,(IX+d) DD|CB| d |ED|SET 5,L,(IX+d)
DD|CB| d |8E|RES 1,(IX+d) DD|CB| d |AE |RES 5,(I1X+5) DD|CB| d |CE[SET 1,(IX+d) DD|CB| d |EE[SET 5,(IX+5)

DD|CB| d |8F|RES 1,A,(IX+d) DD|CB| d | AF |RES 5,A,(IX+d) DD|CB| d |CF|SET 1,A,(IX+d) DD|CB| d |EF|[SET 5,A,(IX+d)
DD|CB| d |90 |RES 2,B,(IX+d) DD|CB| d | BO |RES 6,B,(IX+d) DD|CB| d |DO|[SET 2,B,(IX+d) DD|CB| d [FO[SET 6,B,(IX+d)
DD|CB| d |91 |RES 2,C,(IX+d) DD|CB| d |B1 |RES 6,C,(IX+d) DD|CB| d |D1|SET 2,C,(IX+d) DD|CB| d |F1|[SET 6,C,(IX+d)
DD|CB| d |92 |RES 2,D,(IX+d) DD|CB| d | B2 |RES 6,D,(IX+d) DD|CB| d |D2|SET 2,D,(IX+d) DD|CB| d |F2|SET 6,D,(IX+d)
DD|CB| d |93 |[RES 2,E,(IX+d) DD|CB| d | B3 |RES 6,E,(IX+d) DD|CB| d |D3|SET 2,E,(IX+d) DD|CB| d |F3[SET 6,E,(IX+d)
DD|CB| d |94 |RES 2,H,(IX+d) DD|CB| d | B4 |RES 6,H,(IX+d) DD|CB| d |D4|SET 2,H,(IX+d) DD|CB| d [F4[SET 6,H,(IX+d)
DD|CB| d |95 |RES 2,L,(IX+d) DD|CB| d | B5 |RES 6,L,(IX+d) DD|CB| d |D5|[SET 2,L,(IX+d) DD|CB| d |F5|SET 6,L,(IX+d)
DD|CB| d |96 [RES 2,(IX+d) DD|CB| d | B6 |RES 6,(1X+6) DD|CB| d |D6[SET 2,(IX+d) DD|CB| d |F6|SET 6,(1X+6)

DD|CB| d |97 |RES 2,A,(IX+d) DD|CB| d [B7 |RES 6,A,(IX+d) DD|CB| d |D7[SET 2,A,(IX+d) DD|CB| d [F7|SET 6,A,(IX+d)
DD|CB| d |98 |RES 3,B,(IX+d) DD|CB| d | B8 |RES 7,B,(IX+d) DD|CB| d |D8|SET 3,B,(IX+d) DD|CB| d |F8|SET 7,B,(IX+d)
DD|CB| d |99 [RES 3,C,(IX+d) DD|CB| d | B9 |RES 7,C,(IX+d) DD|CB| d |D9|SET 3,C,(IX+d) DD|CB| d |[F9|[SET 7,C,(IX+d)
DD|CB| d [9A|RES 3,D,(IX+d) DD|CB| d [BA |RES 7,D,(IX+d) DD|CB| d |DA|SET 3,D,(IX+d) DD|CB| d |FA[SET 7,D,(IX+d)
DD|CB| d |9B[RES 3,E,(IX+d) DD|CB| d |BB |RES 7,E,(IX+d) DD|CB| d |DB|SET 3,E,(IX+d) DD|CB| d |FB|SET 7,E,(IX+d)
DD|CB| d |[9C|RES 3,H,(IX+d) DD|CB| d [BC |RES 7,H,(IX+d) DD|CB| d |DC|SET 3,H,(IX+d) DD|CB| d |FC|[SET 7,H,(IX+d)
DD|CB| d [9D|RES 3,L,(IX+d) DD|CB| d |BD |RES 7,L,(IX+d) DD|CB| d |DD|SET 3,L,(IX+d) DD|CB| d |FD|[SET 7,L,(IX+d)
DD|CB| d |9E[RES 3,(IX+d) DD|CB| d | BE |RES 7,(IX+7) DD|CB| d |DE|SET 3,(IX+d) DD|CB| d |FE|[SET 7,(IX+7)

DD|CB| d |9F |RES 3,A,(IX+d) DD|CB| d | BF |RES 7,A,(IX+d) DD|CB| d |DF|[SET 3,A,(IX+d) DD|CB| d |FF|[SET 7,A,(IX+7)

Page 7-6

How a Z80® processes EDXX[xxxX]

ED]00 NOP ED|[20 NOP ED|40 IN B,(C) ED|60 IN H,(C)
ED|01 NOP ED|21 NOP ED|41 OUT (C),B ED|61 OUT (C),H
ED|02 NOP ED|[22 NOP ED|42 SBC HL,BC ED|62 SBC HL,HL
ED|03 NOP ED|23 NOP ED|43 LD (word),BC ED|63 LD (word),HL
ED|04 NOP ED|[24 NOP ED |44 NEG ED|64 NEG

ED|05 NOP ED|[25 NOP ED|45 RETN ED|65 RETN

ED|06 NOP ED|26 NOP ED |46 IM 0 ED|66 IM 0

ED|07 NOP ED|27 NOP ED |47 LD LA ED|67 RRD

ED|08 NOP ED|28 NOP ED|48 IN C(C) ED|68 INL,(C)
ED|09 NOP ED|29 NOP ED|49 OUT (C),C ED|(69 OUT (C),L
ED|0A NOP ED|2A NOP ED|4A ADC HL,BC ED|6A ADC HL,HL
ED|0B NOP ED|[2B NOP ED|4B LD BC,(word) ED|6B LD HL,(word)
ED|0C NOP ED|2C NOP ED[4C NEG ED|6C NEG

ED|0D NOP ED|2D NOP ED|4D RETI ED|6D RETN

ED|0E NOP ED|2E NOP ED [4E IM 0 ED |6E IM 0

ED|OF NOP ED|2F NOP ED |4F LDRA ED|6F RLD

ED|10 NOP ED|30 NOP ED|50 IN D,(C) ED|70 IN (HL),(C)
ED|11 NOP ED|31 NOP ED|51 OUT (C),D ED|71 OUT (C),(HL)
ED|12 NOP ED|32 NOP ED|52 SBC HL,DE ED|72 SBC HL,SP
ED|[13 NOP ED|33 NOP ED|53 LD (word),DE ED|73 LD (word),SP
ED|14 NOP ED|[34 NOP ED |54 NEG ED|74 NEG

ED|15 NOP ED|35 NOP ED|55 RETN ED|75 RETN

ED|[16 NOP ED|36 NOP ED|[56 IM 1 ED|76 IM 1

ED|17 NOP ED|37 NOP ED|57 LD Al ED|77 NOP

ED|18 NOP ED|38 NOP ED|58 INE,(C) ED|78 IN'A,(C)
ED|19 NOP ED|[39 NOP ED|59 OUT (C).E ED|79 OUT (C).A
ED|1A NOP ED|[3A NOP ED|[5A ADC HL,DE ED|7A ADC HL,SP
ED|1B NOP ED|3B NOP ED|5B LD DE,(word) ED|7B LD SP,(word)
ED|1C NOP ED|3C NOP ED|5C NEG ED|7C NEG

ED|1D NOP ED|3D NOP ED|5D RETN ED|7D RETN

ED|1E NOP ED[3E NOP ED |5E IM 2 ED|7E IM 2

ED|1F NOP ED|3F NOP ED|5F LDAR ED|7F NOP

Page 7-7

How a Z80® processes EDXX[xxxX]

ED|80 NOP ED|AO LDI ED|CO NOP ED|EO NOP
ED|81 NOP ED|Al CPI ED|C1 NOP ED|E1 NOP
ED |82 NOP ED|A2 INI ED|C2 NOP ED|E2 NOP
ED|83 NOP ED|A3 OUTI ED|C3 NOP ED|E3 NOP
ED |84 NOP ED|A4 NOP ED|C4 NOP ED|E4 NOP
ED|85 NOP ED|A5 NOP ED|C5 NOP ED |E5 NOP
ED |86 NOP ED|A6 NOP ED|C6 NOP ED|E6 NOP
ED|87 NOP ED|A7 NOP ED|C7 NOP ED|E7 NOP
ED |88 NOP ED|A8 LDD ED|C8 NOP ED |E8 NOP
ED |89 NOP ED|A9 CPD ED|C9 NOP ED|E9 NOP
ED|8A NOP ED|AA IND ED|CA NOP ED|EA NOP
ED|8B NOP ED|AB OuTD ED|CB NOP ED|EB NOP
ED|8C NOP ED|AC NOP ED|CC NOP ED |EC NOP
ED|8D NOP ED|AD NOP ED|CD NOP ED|ED NOP
ED|8E NOP ED|AE NOP ED|CE NOP ED|EE NOP
ED |8F NOP ED |AF NOP ED|CF NOP ED |EF NOP
ED|90 NOP ED|BO LDIR ED|DO NOP ED|FO NOP
ED|91 NOP ED|B1 CPIR ED|D1 NOP ED|F1 NOP
ED|92 NOP ED|B2 INIR ED|D2 NOP ED|F2 NOP
ED|93 NOP ED|B3 OTIR ED|D3 NOP ED|F3 NOP
ED|94 NOP ED|B4 NOP ED|D4 NOP ED|F4 NOP
ED|95 NOP ED|B5 NOP ED|D5 NOP ED|F5 NOP
ED |96 NOP ED |B6 NOP ED|D6 NOP ED|F6 NOP
ED|97 NOP ED|B7 NOP ED|D7 NOP ED|F7 NOP
ED|98 NOP ED|B8 LDDR ED|D8 NOP ED|F8 NOP
ED|99 NOP ED|B9 CPDR ED|D9 NOP ED|F9 NOP
ED|9A NOP ED|BA INDR ED|DA NOP ED|FA NOP
ED|9B NOP ED|BB OTDR ED|DB NOP ED|FB NOP
ED|9C NOP ED|BC NOP ED|DC NOP ED|FC NOP
ED|9D NOP ED|BD NOP ED|DD NOP ED|FD NOP
ED|9E NOP ED|BE NOP ED|DE NOP ED|FE NOP
ED|9F NOP ED|BF NOP ED|DF NOP ED|FF NOP

Page 7-8

How a Z80® processes FD[[xx[xx]]xX]

FD|00 NOP : NOP FD[20 [n NOP : JR NZ,n FD |40 NOP : LD B,B FD[60 LD HY,B
FD|01 NOP : LD BC,mn FD|21 [n LD IY,word FD |41 NOP : LD B,C FD |61 LD HY,C
FD|02 NOP : LD (BC),A FD|22 [n LD (word),IY FD |42 NOP : LD B,D FD |62 LD HY,D
FD|03 NOP : INC BC FD|23 INC IY FD|43 NOP : LD B,E FD |63 LD HY,E
FD|04 NOP : INC B FD|[24 INC HY FD |44 LD B,HY FD |64 LD HY,HY
FD|05 NOP : DEC B FD|25 DEC HY FD |45 LDB,LY FD |65 LD HY,LY
FD|06 NOP : LD B,n FD[26 | n LD HY,byte FD |46 LD B,(IY+d) FD 66 | d LD H,(IY+d)
FD|07 NOP : RLCA FD |27 NOP : DAA FD |47 NOP: LD B,A FD |67 LD HY,A
FD|08 NOP : EX AF,AF FD|28 | n NOP : JR Z,n FD |48 NOP:LD C,B FD |68 LDLY,B
FD|09 ADD IY,BC FD|29 ADD IV, IY FD |49 NOP: LD C,C FD |69 LDLY,C
FD|0A NOP : LD A,(BC) FD|2A [n LD IY,(word) FD |4A NOP : LD C,D FD |6A LDLY,D
FD|0B NOP : DEC BC FD|2B DEC IY FD|4B NOP:LD C,E FD|6B LDLY,E
FD|0C NOP : INC C FD|2C INC LY FD|4C LD C,HY FD[6C LD LY,HY
FD|OD NOP : DEC C FD|2D DEC LY FD|4D LDC,LY FD|6D LDLY,LY
FD|OE NOP:LD Cn FD|2E [n LD LY,byte FD |4E LD C,(IY+d) FD|6E | d LD L,(IY+d)
FD|OF NOP : RRCA FD|2F NOP : CPL FD|4F NOP : LD C,A FD |6F LDLY,A
FD|10 NOP : DINZ n FD|30 | n NOP : JR NC,n FD |50 NOP :LD D,B FD|70 | d LD (IY+d),B
FD|11 NOP : LD DE,mn FD|31 | n NOP : LD SP,mn FD |51 NOP : LD D,C FD|71 | d LD (IY+d),C
FD|12 NOP : LD (DE),A FD |32 NOP : LD (mn),A FD|52 NOP : LD D,D FD|72 | d LD (IY+d),D
FD|13 NOP : INC DE FD|33 NOP : INC SP FD|53 NOP : LD D,E FD|73 | d LD (IY+d),E
FD |14 NOP : INC D FD[34 | d INC (IY+d) FD |54 LD D,HY FD|74 | d LD (IY+d),H
FD|15 NOP : DEC D FD[35 | d DEC (IY+d) FD|55 LDD,LY FD|75 | d LD (IY+d),L
FD|16 NOP : LD D;n FD|36 | d LD (IY+d),byte FD|56 LD D,(IY+d) FD|76 NOP : HALT
FD|17 NOP : RLA FD|37 NOP : SCF FD|57 NOP : LD D,A FD|77 | d LD (IY+d),A
FD|18 NOP :JR n FD|38 | n NOP : JR C,n FD |58 NOP : LD E,B FD|78 NOP: LD A,B
FD|19 ADD IY,DE FD|39 ADD IY,SP FD|59 NOP : LD E,C FD |79 NOP : LD A,C
FD|1A NOP : LD A,(DE) FD|3A | n NOP : LD A,(mn) FD |5A NOP : LD E,D FD|7A NOP : LD A,D
FD|1B NOP : DEC DE FD|3B NOP : DEC SP FD|5B NOP : LD E,E FD|7B NOP: LD A,E
FD|1C NOP : INC E FD[3C NOP : INC A FD|5C LD E,HY FD|7C LD A HY
FD|1D NOP : DEC E FD|3D NOP : DEC A FD|5D LDELY FD|7D LDALY
FD|1E NOP : LD E,n FD|3E | n NOP : LD An FD|5E LD E,(IY+d) FD|7E | d LD A,(IY+d)
FD|1F NOP : RRA FD|3F NOP : CCF FD |5F NOP : LD E,A FD|7F NOP: LD AA

Page 7-9

How a Z80® processes FD[[xx[xx]]xX]

FD 80 NOP : ADD A B FD [AO NOP : AND B FD[CO NOP : RET NZ FD[EO NOP : RET PO
FD |81 NOP : ADD A,C FD AL NOP : AND C FD|C1 NOP : POP BC FD [E1 POP IY

FD |82 NOP : ADD A,D FD |A2 NOP : AND D FD|C2 m |NOP : JP NZ,mn FD |E2 NOP : JP PO,mn
FD|83 NOP : ADD A,E FD|A3 NOP : AND E FD|C3 m |[NOP : JP mn FD |E3 EX (SP),IY

FD|84 ADD A HY FD [A4 AND HY FD|C4 m [NOP : CALLNZmn| |FD|E4 NOP : CALL PO,mn
FD|85 ADD A LY FD A5 AND LY FD|C5 NOP : PUSH BC FD [E5 PUSH IY

FD|86 ADD A, (IY+d) FD |A6 AND (IY+d) FD|C6 NOP : ADD A n FD|E6 NOP : AND n

FD |87 NOP : ADD A A FD|A7 NOP : AND A FD|C7 NOP : RST 00H FD|E7 NOP : RST 20H
FD |88 NOP : ADC A,B FD |A8 NOP : XOR B FD|C8 NOP : RET Z FD|E8 NOP : RET PE
FD[89 NOP : ADC A,C FD |A9 NOP : XOR C FD|C9 NOP : RET FD [E9 JP (1Y)

FD [8A NOP : ADC A,D FD [AA NOP : XOR D FD|CA[n |[m |NOP:JP Zmn FD [EA NOP : JP PE,mn
FD 8B NOP : ADC A.E FD |AB NOP : XOR E FD|CB see Opcode FDCB| |FD |EB NOP : EX DE,HL
FD|8C ADC A HY FD|AC XOR HY FD|CC| n | m [NOP: CALL Z,mn FD|EC NOP : CALL PE,mn
FD|[8D ADC A LY FD|AD XOR LY FD|CD| n | m |[NOP : CALL mn FD |ED NOP : EDxx
FD[8E ADC A, (IY+d) FD |AE XOR (IY+d) FD|CE NOP : ADC An FD|EE NOP : XOR n
FD|SF NOP : ADC A A FD |AF NOP : XOR A FD|CF NOP : RST 08H FD|EF NOP : RST 28H
FD |90 NOP : SUB B FD [BO NOP:OR B FD DO NOP : RET NC FD|FO NOP : RET P

FD o1 NOP : SUB C FD[B1 NOP: OR C FD D1 NOP : POP DE FD|F1 NOP : POP AF
FD |92 NOP : SUB D FD B2 NOP : OR D FD |D2 m |NOP : JP NC,mn FD |F2 NOP : JP P,mn
FD |93 NOP : SUB E FD[B3 NOP:ORE FD|D3 NOP : OUT (m),A FD|F3 NOP : DI

FD|94 SUB HY FD|B4 OR HY FD|D4 m |[NOP : CALL NC,mn| |FD |F4 NOP : CALL P,mn
FD|95 SUB LY FD|B5 ORLY FD|D5 NOP : PUSH DE FD|F5 NOP : PUSH AF
FD |96 SUB (IY+d) FD|B6 OR (IY+d) FD|D6 NOP : SUB n FD|F6 NOP : OR n

FD |97 NOP : SUB A FD|B7 NOP : OR A FD|D7 NOP : RST 10H FD|F7 NOP : RST 30H
FD |98 NOP : SBC A,B FD|B8 NOP :CP B FD|D8 NOP : RET C FD|F8 NOP : RET M

FD |99 NOP : SBC A.C FD B9 NOP:CP C FD D9 NOP : EXX FD[F9 LD SP,IY

FD [9A NOP : SBC A,D FD [BA NOP : CP D FD|[DA[n [m |[NOP:JP C,mn FD |FA NOP : JP M,mn
FD[9B NOP : SBC A.E FD BB NOP:CP E FD|DB NOP : IN A,(m) FD|FB NOP : El

FD|oC SBC A HY FD|BC CP HY FD|DC| n | m [NOP: CALL C,mn FD|FC NOP : CALL M,mn
FD|9D SBCALY FD[BD CPLY FD DD NOP : DDxX[xx[xx]] | |FD |FD NOP : FDXX[XX[XX]]
FD|9E SBC A,(IY+d) FD[BE CP (IY+d) FD|DE NOP : SBC An FD [FE NOP : CP n
FD|9F NOP : SBC A,A FD|BF NOP : CP A FD|DF NOP : RST 18H FD|FF NOP : RST 38H

Page 7-10

How a Z80°® processes FDCBxxxx

FD[CB] d [00[RLC B,(IY+d) FD[CBJ d [20[SLA B,(IY+d) FD[CBJ d [40[BIT 0,(IY+d) FD[CBJ d [60[BIT 4,(IY+d)
FD|CB]| d [01|RLC C,(IY+d) FD|CB]| d [21[SLA C,(IY+d) FD|CB]| d [41[BIT 0,(IY+d) FD|CB| d [61[BIT 4,(IY+d)
FD|CB| d [02|RLC D,(IY+d) FD|CB| d [22|SLA D,(IY+d) FD|CB| d [42[BIT 0,(IY+d) FD|CB| d [62[BIT 4,(IY+d)
FD|CB]| d [03|RLC E,(IY+d) FD|CB]| d [23|SLA E,(IY+d) FD|CB| d [43[BIT 0,(IY+d) FD|CB| d [63[BIT 4,(IY+d)
FD|CB]| d [04|RLC H,(IY+d) FD|CB| d [24[SLA H,(IY+d) FD|CB| d [44[BIT 0,(IY+d) FD|CB| d [64[BIT 4,(IY+d)
FD|CB| d [05|RLC L,(IY+d) FD|CB| d [25[SLA L,(IY+d) FD|CB| d [45[BIT 0,(IY+d) FD|CB| d [65[BIT 4,(IY+d)
FD|CB]| d [06|RLC (IY+d) FD|CB]| d [26(SLA (IY+d) FD|CB| d [46[BIT 0,(IY+d) FD|CB| d [66[BIT 4,(IY+d)
FD|CB]| d [07|RLC A, (IY+d) FD|CB]| d [27[SLA A (IY+d) FD|CB]| d [47[BIT 0,(IY+d) FD|CB| d [67[BIT 4,(IY+d)
FD|CB| d [08|RRC B,(IY+d) FD|CB]| d [28]SRA B,(IY+d) FD|CB| d [48[BIT 1,(IY+d) FD|CB| d [68[BIT 5,(IY+d)
FD|CB]| d [09|RRC C,(IY+d) FD|CB| d [29[SRA C,(IY+d) FD|CB| d [49[BIT 1,(IY+d) FD|CB]| d [69[BIT 5,(IY+d)
FD|CB]| d [0A[RRC D,(IY+d) FD|CB| d [2A[SRA D,(IY+d) FD|CB| d [4A[BIT 1,(IY+d) FD|CB]| d [6A[BIT 5,(IY+d)
FD|CB| d [0B|RRC E,(IY+d) FD|CB| d [2B|SRA E,(IY+d) FD|CB| d [4B[BIT 1,(IY+d) FD|CB| d [6B|BIT 5,(IY+d)
FD|CB]| d [0C|RRC H,(IY+d) FD|CB| d [2C[SRA H,(IY+d) FD|CB| d [4C[BIT 1,(IY+d) FD|CB| d [6C|BIT 5,(IY+d)
FD|CB]| d [0OD|RRC L,(IY+d) FD|CB]| d [2D[SRA L,(IY+d) FD|CB| d [4D[BIT 1,(IY+d) FD|CB| d [6D[BIT 5,(IY+d)
FD|CB[d [0OE|RRC (IY+d) FD|CB| d [2E[SRA (IY+d) FD|CB| d [4E[BIT 1,(IY+d) FD|CB| d [6E[BIT 5,(1Y+d)
FD|CB]| d [OF|[RRC A, (IY+d) FD|CB| d [2F[SRA A,(IY+d) FD|CB| d [4F[BIT 1,(IY+d) FD|CB| d [6F|BIT 5,(IY+d)
FD|CB| d [10|RL B,(IY+d) FD|CB]| d [30[SLL B,(IY+d) FD|CB]| d [50[BIT 2,(IY+d) FD|CB]| d [70[BIT 6,(IY+d)
FD|CB]| d [11|RL C,(IY+d) FD|CB| d [31[SLL C,(IY+d) FD|CB| d [51[BIT 2,(IY+d) FD|CB| d [71[BIT 6,(IY+d)
FD|CB]| d [12|RL D,(IY+d) FD|CB]| d [32[SLL D,(IY+d) FD|CB| d [52[BIT 2,(IY+d) FD|CB]| d [72[BIT 6,(IY+d)
FD|CB| d [13|RL E,(IY+d) FD|CB]| d [33[SLL E,(IY+d) FD|CB] d [53[BIT 2,(IY+d) FD|CB]| d [73[BIT 6,(IY+d)
FD|CB]| d |14 |RL H,(IY+d) FD|CB| d [34[SLL H,(IY+d) FD|CB| d [54[BIT 2,(IY+d) FD|CB| d [74|BIT 6,(IY+d)
FD|CB]| d [15|RL L,(IY+d) FD|CB]| d [35|SLL L,(IY+d) FD|CB| d [55[BIT 2,(IY+d) FD|CB]| d [75|BIT 6,(IY+d)
FD|CB]| d [16[RL (IY+d) FD[CB| d [36[SLL (IY+d) FD|CB| d [56[BIT 2,(IY+d) FD|CB| d [76[BIT 6,(1Y+d)
FD|CB]| d [17|RL A,(IY+d) FD[CB| d [37[SLL A,(IY+d) FD|CB| d [57BIT 2,(IY+d) FD|CB| d [77BIT 6,(IY+d)
FD|CB]| d [18|RR B,(IY+d) FD|CB| d [38[SRL B,(IY+d) FD|CB| d [58[BIT 3,(IY+d) FD|CB]| d [78[BIT 7,(IY+d)
FD|CB| d [19|RR C,(IY+d) FD|CB]| d [39[SRL C,(IY+d) FD|CB]| d [59[BIT 3,(IY+d) FD|CB| d [79[BIT 7,(IY+d)
FD|CB]| d [1A|RR D,(IY+d) FD|CB| d [3A[SRL D,(IY+d) FD|CB| d [5A[BIT 3,(IY+d) FD|CB| d [7A[BIT 7,(IY+d)
FD|CB]| d [1B|RR E,(IY+d) FD|CB]| d [3B|SRL E,(IY+d) FD|CB| d [5B[BIT 3,(IY+d) FD|CB| d [7B[BIT 7,(IY+d)
FD|CB]| d [1C|RR H,(IY+d) FD|CB] d [3C[SRL H,(IY+d) FD|CB] d [5C[BIT 3,(IY+d) FD|CB]| d [7C[BIT 7,(IY+d)
FD|CB]| d [1D|RR L,(IY+d) FD|CB| d [3D[SRL L,(IY+d) FD|CB| d [5D|BIT 3,(IY+d) FD|CB| d [7D[BIT 7,(IY+d)
FD|CB]| d [1E[RR (IY+d) FD|CB]| d |3E[SRL (IY+d) FD|CB| d [SE[BIT 3,(IY+d) FD|CB| d [7E[BIT 7,(1Y+d)
FD|CB| d [1F|RR A,(IY+d) FD|CB| d [3F|[SRL A,(IY+d) FD|CB]| d [5F[BIT 3,(IY+d) FD|CB]| d [7F[BIT 7,(IY+d)

Page 7-11

How a Z80°® processes FDCBxxxx

FD|CB[d [80]|RES 0,B,(IY+d) FD|CB[d | A0 |RES 4,B,(IY+d) FD[CB[d [CO[SET 0,B,(IY+d) FD[CB][d [EO|RES 4,B,(IY+d)
FD|CB| d [81|RES 0,C,(IY+d) FD|CB| d | A1 |RES 4,C,(IY+d) FD|CB| d [C1[SET 0,C,(IY+d) FD|CB| d [E1[SET 4,C,(IY+d)
FD|CB| d [82|RES 0,D,(IY+d) FD|CB| d | A2 |RES 4,D,(IY+d) FD|CB| d [C2|SET 0,D,(IY+d) FD|CB| d |E2[SET 4,D,(IY+d)
FD|CB| d |83|RES 0,E,(IY+d) FD|CB| d | A3 |RES 4,E,(IY+d) FD|CB| d [C3[SET 0,E,(IY+d) FD|CB| d |E3[SET 4,E,(IY+d)
FD|CB| d [84|RES O,H,(IY+d) FD|CB| d | A4 |RES 4 ,H,(IY+d) FD|CB| d [C4[SET 0,H,(IY+d) FD|CB| d [E4[SET 4,H,(Y+d)
FD|CB| d [85|RES O,L,(IY+d) FD|CB[d | A5 |RES 4,L,(IY+d) FD|CB| d [C5|SET O,L,(IY+d) FD|CB[d |E5[SET 4,L,(IY+d)
FD|CB| d |86 |RES 0,(IY+d) FD|CB| d | A6 |RES 4,(IX+4) FD|CB| d [C6|SET 0,(1Y+d) FD|CB| d |E6[SET 4,(1X+4)

FD|CB| d [87|RES 0,A,(IY+d) FD|CB| d | A7 |RES 4,A (IY+d) FD|CB| d [C7[SET 0,A,(IY+d) FD|CB| d [E7[SET 4,A,(1Y+d)
FD|CB| d [88]|RES 1,B,(IY+d) FD|CB| d | A8 |RES 5,B,(IY+d) FD|CB| d [C8|SET 1,B,(IY+d) FD|CB| d |E8|SET 5,B,(IY+d)
FD|CB| d [89|RES 1,C,(IY+d) FD|CB| d | A9 |RES 5,C,(IY+d) FD|CB]| d [C9[SET 1,C,(IY+d) FD|CB| d [E9[SET 5,C,(IY+d)
FD|CB| d [8A|RES 1,D,(IY+d) FD|CB| d | AA |RES 5,D,(IY+d) FD|CB| d [CA[SET 1,D,(IY+d) FD|CB| d [EA[SET 5,D,(Y+d)
FD|CB| d [8B|RES 1,E,(IY+d) FD|CB| d | AB |RES 5,E,(IY+d) FD|CB| d [CB|SET 1,E,(IY+d) FD|CB| d |EB|SET 5,E,(IY+d)
FD|CB| d |8C|RES 1,H,(IY+d) FD|CB| d | AC |RES 5,H,(IY+d) FD|CB]| d [CC[SET 1,H,(IY+d) FD|CB| d |EC|SET 5,H,(1Y+d)
FD|CB| d [8D|RES 1,L,(IY+d) FD|CB| d | AD |RES 5,L,(IY+d) FD|CB| d [CD[SET 1,L,(IY+d) FD|CB| d [ED[SET 5,L,(IY+d)
FD|CB| d [8E|RES 1,(IY+d) FD|CB| d | AE |RES 5,(IX+5) FD|CB| d [CE[SET 1,(1Y+d) FD|CB| d |EE[SET 5,(1X+5)

FD|CB| d |8F|RES 1,A,(IY+d) FD|CB| d | AF |RES 5,A,(IY+d) FD|CB| d [CF[SET 1,A,(IY+d) FD|CB| d |EF|SET 5,A,(1Y+d)
FD|CB| d [90|RES 2,B,(IY+d) FD|CB| d | BO |RES 6,B,(IY+d) FD|CB| d [DO[SET 2,B,(IY+d) FD|CB| d [FO[SET 6,B,(1Y+d)
FD|CB| d [91]|RES 2,C,(IY+d) FD|CB| d | B1 |RES 6,C,(IY+d) FD|CB| d [D1|SET 2,C,(IY+d) FD|CB| d |F1[SET 6,C,(IY+d)
FD|CB| d [92|RES 2,D,(IY+d) FD|CB| d | B2 |RES 6,D,(IY+d) FD|CB| d [D2[SET 2,D,(IY+d) FD|CB| d [F2[SET 6,D,(IY+d)
FD|CB| d [93|RES 2,E,(IY+d) FD|CB]| d | B3 |RES 6,E,(IY+d) FD|CB| d [D3[SET 2,E,(IY+d) FD|CB| d [F3[SET 6,E,(IY+d)
FD|CB| d [94]|RES 2,H,(IY+d) FD|CB| d | B4 |RES 6,H,(IY+d) FD|CB| d [D4[SET 2,H,(IY+d) FD|CB| d |F4[SET 6,H,(1Y+d)
FD|CB| d |95|RES 2,L,(IY+d) FD|CB| d | B5 |RES 6,L,(IY+d) FD|CB| d [D5[SET 2,L,(IY+d) FD|CB| d [F5[SET 6,L,(IY+d)
FD|CB| d |96 |RES 2,(IY+d) FD|CB| d | B6 |RES 6,(IX+6) FD|CB| d [D6|[SET 2,(1Y+d) FD|CB| d [F6[SET 6,(1X+6)

FD|CB| d [97|RES 2,A,(IY+d) FD|CB| d | B7 |RES 6,A,(IY+d) FD|CB| d [D7[SET 2,A,(IY+d) FD|CB| d |F7[SET 6,A,(IY+d)
FD|CB| d |98|RES 3,B,(IY+d) FD|CB| d | B8 |RES 7,B,(IY+d) FD|CB| d [D8|[SET 3,B,(IY+d) FD|CB| d [F8[SET 7,B,(IY+d)
FD|CB| d [99|RES 3,C,(IY+d) FD|CB| d | B9 |RES 7,C,(IY+d) FD|CB]| d [D9[SET 3,C,(IY+d) FD|CB| d [F9[SET 7,C,(IY+d)
FD|CB| d [9A|RES 3,D,(IY+d) FD|CB| d | BA |RES 7,D,(IY+d) FD|CB| d [DA|SET 3,D,(IY+d) FD|CB| d [FA[SET 7,D,(IY+d)
FD|CB| d |9B|RES 3,E,(IY+d) FD|CB| d | BB |RES 7,E,(IY+d) FD|CB| d [DB|SET 3,E,(IY+d) FD|CB| d [FB|SET 7,E,(IY+d)
FD|CB| d [9C|RES 3,H,(IY+d) FD|CB| d | BC |RES 7,H,(IY+d) FD|CB| d [DC[SET 3,H,(IY+d) FD|CB| d [FC[SET 7,H,(Y+d)
FD|CB| d [9D|RES 3,L,(IY+d) FD|CB]| d | BD |RES 7,L,(IY+d) FD|CB| d [DD|SET 3,L,(IY+d) FD|CB| d [FD[SET 7,L,(IY+d)
FD|CB| d |9E|RES 3,(IY+d) FD|CB| d | BE |RES 7,(IX+7) FD|CB| d [DE|SET 3,(IY+d) FD|CB| d [FE[SET 7,(IX+7)

FD|CB| d [9F|RES 3,A,(IY+d) FD|CB| d | BF |RES 7,A,(IY+d) FD|CB| d [DF[SET 3,A,(IY+d) FD|CB| d [FF|SET 7.A,(IX+7)

Page 7-12

A
A command
ADC
8-bit .
16-bit .
ADD
8-bit .
16-bit .
ADDR. . .
addresses

AND, logical (source code).

AND, mnemonic .

arithmetic
8-bit .
16-bit .

assemble.

B
B command

base (constant) .
bit manipulation.

BIT . . .
branch. .

C
C command
calculator
CALL. . .
CCF . . .
change. .
COMM. . .
Commands
A. . . .
B. . . .
C. . . .
D. . . .
E. . . .
F. . . .
G. . . .
H. . . .
. . . .
J. . . .
K. - . .
L. . . .
M. . ..
NC . . .
NE . . .
0. . . .
P. . . .
QU . . .
R. . . .
S. . . .

- . -5-13
- . 5-121

- . -5-16
- . 5-122

1-10, 3-5
- . -5-19

- . -5-13
- . 5-121

- - - 35
- - - 1-9
- . -5-83
- . -5-83
- . 5-129

INDEX

T. . . .
u. . . .
V.o . ..
X. . . .
comment .
Constant.

copy, source text

copy/move
CP. . . .
CPD . . .
CPDR. . .
CPI . . .
CPIR. . .
CPL . . .

(instructions). .

CPU control (instructions).
Current line.

D
D command
DAA . . .
DB. . . .
DEC
8-bit .
16-bit .
DEFB. . .
DEFL. . .
DEFM. . .
DEFS. . .
DEFW. . .
delete. .

delete, file.

directory
DI. . . .
DINZ. . .
DL. . . .
DM. . . .

DOS errors (load errors). .

DS. . . .

duplicate,

Dw. . . .

source text. . .

-3-17
3-17
-3-18
-3-18
- 1-7
- 1-9
.3-14
5-143
.5-22
5-147
5-148
5-149
5-150
-5-43
-5-41
- 1-5

Page 8-1

INDEX

E 16-bit 5-126
E coomand 39 IND5-93
Eoption. 3-3 INDR.5-94
EDTASM format 1-2, 3-13, 3-16 INL _ . o o o o o o o o o5-95
e] INIR.5-96
END . - o . o . o25 initialization. 1-2
END0F. - 2-6 input and output.5-91
erase file.3-13 insert, edit. . . _ . . . _ . . . 3-9
ERR o - o o o o27 insert, source text3-12
EQU o o o 227 Instruction 1-7
errors. -44 instructions by mnemonic. 6-7
EX instructions by object code . . 6-19
8bit5-10
16-bit5-113, 5-119
execution times 6-6 J
exit (exit ZEUS).3-16 J command3-12
expression.1-10 J option.33
EXX - - o - o o o o . o5b-114 P . . o o o o o . o o b-129
JR. . . o . . . o 5b-133

F
Fconmand3-10 K
fields. 1-7 K comand3-13
FILENAMES 1-3 keystroke, single 3-2
find labels3-10 KILL. . . - - . . . o o3-13
flags - . -6-1
forms, set printer values . . . _3-10
forms, top of 3-3, 3-12 L
L coomand3-13
Label1-6, 1-7
G label, find3-10
G coomand3-10 label, reference.3-16
G option.33 LD
general purpose5-41 8bit51
GET -28 16-bit 5-103
global changes. 3- LbD - - - . . - 5-143
glossary. 1- LDDR. . . . - - - . . - b-144
br5-145
LDIR. b5-146
H line length . . . _ 1-7
Hcomand3-11 line number 1-7
Hoption. 33 Lest. . . . - - - 2-8
HALT.5-47 list source text. _.3-11, 3-15
hack, edit. 3-9 load.3-13
load (instructions)
8bit51
I 16-bit 5-103
Il coomand3-12 logic 8-bit . . . _5-19
O I logical AND 1-10, 3-5
IF. - - o o - 0o L. . .26 logical OR. 1-10, 3-5
IM. - - o o o o o o o o o o . . .5-50 logical XOR 1-10, 3-5
IN. . - o o o o oo o o oo .. 591 LPrint. . . 1-4, 2-9, 3-3, 3-11, 3-12
INC
8bit5-27

Page 8-2

INDEX

M Q

M command3-14 Qoption.34

manual notation 1-5 QU command.3-15

memory usage.3-17

MESP.29

MESV.29 R

Mnemonic. 1-6 Rcommand3-16

move. . - . . . - - -3-14 raw data to printer _.3-12

multiplication. 1-10, 3-5 recover text.3-18
Redefinition.2-3, 4-6
reference3-15, 3-16, 4-12

N reference opcodes, operands . . .3-15

N option. 33 reference error _ 4-2

NC command.3-14 Relative address.

NE command.3-14 - - - - - - -1-6, 1-9, 2-7, 2-9,

NEG -b-44 2-12

NOP -b-46 RELNUM.1-5

notation, manual. 1-5 RELNUML3-6, 3-8, 3-11
RELNUM23-6
RELNUM33-14

0] remove files.3-13

O command3-15 remove remarks.3-15

Ooption.33 RESb-85

Object code1-6, 3-3 RET - b5-138

OBJCODE 1-8 RETI. 5-140

opcode. - . . . o . . . 1-7 RETN. b5-141

opcode reference.3-15 RL. . - - - . o - o o5-57

operand . . . _ 1-7 RLA . -5-53

operand reference3-15 RLC5-60

Operator. 1-6 RLCA. - - - . . o5-54

operation1-10 RLD5-181

OR, logical (source code) . 1-10, 3-5 rotate and shift.5-53

OR, mnemonic.5-29 RR. . - - o o o o . o5-63

ORG o29 RRAb-b5

OTbR. - . - . - b5-100 RRC5-66

OTIR. b-102 RRCA.5-56

out - . -5-97 RRD -b-82

Out of memory 3-7, 4-2, 4-4 RST . . - - . . o o b-142

OQut of range. 4-5

outb. . . - . - . - . -5-99

outr.5-101

Overflow. 4-5

P

P coomand3-15
P option. 33
PAGE.2-10
pause32
POPb5-117
print . . _ _ . . . _3-15
PROG. . . . - . - . - . -12
pseudo-op1-6, 1-7, 1-8, 2-1
PUSH. b5-115

Page 8-3

INDEX

S X
Scomand3-16 Xcommand3-18
Soption.34 XOR, logical. 1-10, 3-5
Save. . . . - - - 2 - - - - . . .3-16 XOR, mnemonic5-38
SBC

8-bit5-32

16-bit 5-128 Z
SBTL.2-10 Z80Z. & - e e e .. .12
SCF o o . ob-42 zaps (printer initialization) . .3-12
search. 5-147
SETb-88
shift 1-10, 3-5
SHOW. 2-8
SLA5-69
SLL72
sort.34, 3-17
Source code 1-6
source text format.4-10
speed 1-2, 3-18
SRAb-75
SRLb-78
SsuBb-35
subtraction 1-10, 3-5
symbolic code 1-7

T
Tcomand3-17
Toption.34
table, label. 3-4, 3-17
target. 4-2
terminal errors 4-4
Text buffer 1-6
Text end. 3-15, 3-16, 4-3
TITL.2-10
token 4-9

]

Ucommand3-17
Uoption. 34
Undefined label 4-6
Unrecognized character. 4-4
undocumented instructions 7-1
usage - - - - - - - - -« - - . . 317

\Y
Vcomand3-18

w
WAIT.2-11
Warning errors.4-4, 4-7

Page 8-4

	Zeus1.pdf
	Zeus2.pdf
	Zeus3.pdf
	Zeus4.pdf
	Zeus5.pdf
	Zeus6.pdf
	Zeus7.pdf
	Zues8UDI.pdf
	Zeus9INDX.pdf

